
u 

15 September 1964 

CONTRACT NAS 9-2522 



C-471 

ENGINEERING STUDY OF THE 

DIGIT AL -OPERATIONAL TECHNIQUE 

FINAL REPORT 

15 September 1964 

Submitted to: 

NATIONAL AERONAUTICS AND SPACE ADIi4INlSTKATION 

MANNED SPACECRAFT CENTER 

STD, CONTROL AND COMPUTER SYSTEM'S 

HOUSTON, TEXAS 

CONTRACT NAS 9 -2522 

LFE ELECTRONICS 

A Division of LABORATORY FOR ELECTRONICS, INC. 

Boston, Massachusetts 02215 



ACKNOWLEDGEMENTS 

This program was monitored by Mr e C . Brady of NASA, MSC, Houston, 

Texas, whose aid during the course of this program was most helpful and appreciated. 

Special mention of the following project co-workers is warranted for their 

many contributions to the success of the program. 

P. James implemented the XBM 1401 Runs and assisted in the result 

analysis. F. Smith was responsible for implementing the MEDOC 

programs and supervising the maintenance of the machine. E .  Schnall 

was the major contributor for the Estimate of an Airborne Computer, 

Task 1x1; D. Prosser and T. Finnegan also contributed to this task. 

C . Battarel provided the major contribution for the Er ro r  Analysis, 

Task I .  M. Elmer assumed program-management responsibilities in 

addition to major conbributions for the MEDOC Simulation, Task I][. 

The authors are grateful for the cooperation and contributions of all project 

personnel. 

ii 



FOREWORD 

This research program, initiated by STD, Control and Computer Systems of 

NASA's Manned Spacecraft Center, under Contract No. NAS 9-2522, called for 

LFE Electronics to study the Digital- Operational Computer Technique in terms 

of: an e r r o r  analysis, simulation of a special-purpose computer problem, and 

an estimate of the weight, size,  power and component count characteristics of 

an airborne computer. 

Due to NASA's interest in  s trapped-down guidance sys tems , the direction-cosine, 

coordinate-conversion computer problem was selected to be studied by LFE . Strap- 

down computation may be divided into two parts - attitude and navigation. The 

navigation computation keeps track of vehicle position in inertial coordinates and 

may be performed at a relatively slow rate. The attitude computation, however, 

relates the rapidly rotating vehicle axis to the fixed, inertial-coordinate system 

and, therefore, must be performed at high speed. I t  is the attitude computatiun 

that is unique to a strap-down configuration and upon which over-all system accuracy 

largely depends; thus, attitude Computation is pertinent to this study and the follow- 

ing discussion. 

This report shall not delve into the question: "Should a general-purpose com- 

puter be used to solve the attitude equations?" It does, however, become involved 

with the question "Which technique?", which arises once a decision favorable to a 

special-purpose computer has been made. Hopefully, this report will assist the 

reader in answering the latter question, 

Presezted herein are the results of a 5-month study of the Digital-Operational 

(DO) computation technique. For those readers who are not familiar with the 

DO technique, it is suggested that References 1, 2 and 6 in the Bibliography 

(Appendix D) be studied prior to reading this report. The following sections 

are logically arranged to afford the reader a ready understanding of the program's 

iii 



scope without overconcern for its mathematical detail. Those readers who are 

interested in details and back-up justification of the comments made, are re- 

ferred to the Appendices. The report describes the three tasks to be performed, 

the results obtained, conclusions , and, finally, recommendations for future 

efforts. 
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1 .O INTRODUCTION 

This report presents the results of a study of the application of the DO 

technique to the attitude computation problem associated with a strap-down 

guidance sys tem . 
The DO technique is by no means a new innovation, and, as noted in 'the 

Bibliography, has been investigated by many others. This is a technique that, 

by its ability to operate in either the rate o r  incremental modes, is competitive 

with the DDA and other special-purpose incremental computers. For the same 

accuracy and time of solution, the DO technique should demonstrate a 25 percent 

potential reduction in size, weight, and power requirements over the DDA imple- 

mentation. This results from the fact that where the DDA requires two registers 

per integrator, the DO technique allows sharing the independent variable register 

with several registers in the rest of the program. 

The study was divided into three tasks: 

TASK I, ERROR ANALYSIS - is concerned with developing e r ro r  formulae 

in the general case which can be used to predict the er rors  for any 

DO mapping configuration. 

TASK 11, MEDOC SIMULATION - concerns the programming of the direction 

cosine and coordinate transformation problem on the - Modular -Expandable, - 
Digital-Operational - - - Computer which is located at LFE . Program sets 

were written which were applicable to machine runs on both the IBM 1401 

and MEDOC. The MEDOC results were compared with the reference 

IBM results and the e r ro r  curves were thus generated. The predicted 

e r ro r s  based upon the e r ror  formulae, a s  derived in lask I, were 

compared to the 'machine runs. 

TASK 111, ESTIMATE OF AN AIRBORNE COMPUTER -is the study of the 

implementation of the attitude equations utilizing the Texas Instruments 

flat packs and the Fairchild Micrologic units. Estimates of volume, 

weight, power, and component count are included. Conclusions and re- 

commendations for further work are also included in this report. 
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After reviewing this report, the reader should be in a position to compare 

the results of this DO study with that of a DDA or  any other special-purpose computer 

technique for the attitude computation application. In addition, the e r ro r  formulae, 

as derived in Task I ,  are applicable to any DO mapping configuration. 

1-2 



2.0. ERROR PREDICTION, TASK I 
2.1 .  Method of Approach 

An exact e r r o r  prediction requires a pulse-by-pulse analysis of the digital- 

operational (DO) problem implementation. This analysis, although possible as 

shown in Appendix A. 1, would be highly impractical. The difficulty stems from 

the very functioning of the pulse multiplier where the output is an irregular 

function of the inputs. The use of an exact e r ro r  formula for a given case - 
for example, the sine-cosine generator with given scale factors and initial 

values - will not give any indication of the e r ro r  obtained for other initial con- 

ditions. To obtain a more generally applicable e r r o r  formulae, a more statisti- 

cal point of view must be introduced. An order of magnitude of the e r rors  will 

be obtained with boundaries on the upper values, according to the analysis 

developed in Appendices A. 2 and A. 3 .  E r r o r  source formulae and open-loop 

propagation formulae are derived in Appendix A. 3 .  When the iteration path is 

closed, as is the case for the direction-cosine problem, the formulae must be 

modified in order to take into account the e r ro r  -feedback action. Closed-loop 

e r r o r  prediction formulae are derived in Appendix A. 4. However, these formulae 

apply to the case where the e r ro r  build-up through e r ro r  propagation is larger 

than the e r ro r  sources themselves. This is not the case of the sine-cosine 

generator where there is negative feedback and the e r ro r  relaxation (defined in 

Appendix A.4, para. A.4.7.4) interval is of 2 radians with a 1-pulse amplitude, 

and the e r ro r  sources generate several e r ro r  pulses within 2 radians. In this 

conjecture, a specialized e r ro r  -propagation formula must be derived that will 

be applicable only to the studied function - the direction-cosine generator. In 

the following, the e r ro r  sources will be analyzed, then a specializer e r ror -  

propagation formula will be derived for the sine-cosine generator, and, finally, 

it will be extended to the general case of the direction-cosine generator where 

the three angles driven will be discussed. 
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2.2. E r r o r  Sources 

The e r r o r  sources correspond to the open-loop e r ro r  formulae developed 

in Appendices A. 2 and A. 3. They will first be applied to the case of a sine- 

cosine generator for a computation time of 20 revolutions (0 = 40n radians) 

with 17 -bit counters and 17 -bit multipliers. 

2.2.1. Truncation E r r o r ,  

the rate of the dx input is always larger then the rate of the dy input. Therefore, 

the worst case of an equal rate,  described in Appendix A. 2 is avoided and the 

worst-case truncation-error problem will be given by Eq. (A-15). 

The sine-cosine generator is a DO program where 

For  the free-running sine-cosine generator, the number of i j  intervals corres- 

pond to the number of monotonic variations without sign reversal of the integrand, 

and for sin 8 as well as cos 6.  For 20 revolutions, k = 4 X 20 = 80. Observing 

that a scale factor of 0.9 can be described by a scale factor of one and a Y 

of 0.9 instead of one, Eq. (A-15) becomes 
max , 

2 e = J 2  (.9) X (17) X 80 = 137 pulses 

2.2.2. Field Er ro r .  

field of the sin 0 and cos 0 counters is used for multiplier inputs. 

There is no field e r ro r  in this problem, since the entire 

2.2.3. Integrand Biased Quantization Er ro r  

is chosen to be 2 

5 = 0, for 0 = 0. 

initial values cannot be described by a power of two, the initial values are set 

with an accuracy of 2 1/2 pulse. In open-loop integration, a large e r ro r  could 

result such as 5 = 1/2 X 40 TI = 63 pulses. Since the problem involves closed- 

loop integration with negative feedback (cf. Appendix A. 4) and a relaxation time 

When the Y -counter scale factor 
-1 , the initial values of sin 0 and cos 0 can be set exactly and 

However, in the case of a scale factor, 0.9, o r  when the 
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t = 2 radians, this initial e r r o r  will be computed after 2 radians and will not r 
grow any further. For  all practical purposes, this e r r o r  can be neglected. 

2.2.4,  Integrand Random Quantization Er ro r .  Application of Eq. (A-21), 

developed in Appendix A. 3 gives 

4 0 1 ~  
3.46 (6) E =- 6 pulses . 

2 .2 .5 .  Integrand Sign-Reversal E r ro r .  

one output e r r o r  pulse is accounted for in each integrand sign reversal, In the 

sine-cosine generator, however, it is very unlikely that this worst case will be 

met, since, due to e r rors ,  the maximum values do not repeat exactly. Therefore, 

a statistical reduction will be obtained and the estimated average integrand 

In the worst-case rule of Appendix ,A. 2, 

sign-reversal e r r o r  will be 

e = f i R  = G O  = 6 .3  pulses . SR (2-3) 

2 .2 .6 .  Total E r r o r  Sources. The sign of the e r ro r s  are unknown; only their 

magnitude predicted at the end of the 20th revolution, is known to be: 

e = 6 + E + e  = 150 pulses (2-4) T SR 

for the sin 8 counter as well as the cos 8 counter. Such e r ro r s  are large and 

are regenerated within each monotonic interval with different signs. I t  is therefore 

not clear as to what will be the action of negative feedback, as analyzed in 

Appendix A.4.  Further insight into the actual form of the e r ro r  function will 

be obtained through use of a specialized error-propagation formula in the next 

section. 
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It can be seen that use of smoothing, where the last two stages of 

the sin 8 and cos 8 counters are not read out, reduces the total e r ror  source 

to the 150/4 value. 

B (smoothing) = 38 pulses . T (2-5) 

2 . 3 .  Erro r  Propagation 

2 .3 .1 .  Erro r  Propagation Analytical Model. An inspection of the program 

map (Figure 3.3) permits the equations for the iterated values of sin 8 and 

cos 0 for intervals of computation of several input pulses, de, to be written. 

Let 0 and 8 be two successive positions of 8, e and e the corresponding 

e r ro r s  on the values of sin 8 and sin 8 and e and e the e r rors  on the 1 2' C 

values of cos 8 and cos 8 1 2' 
M feeding the sin 8 counter being 6 . It can be written by inspection 

2 S 1 1 2 S 

2 C 1 
The corresponding total e r r o r  source in multiplier 

1 4 2  
S S 

e 1-2 1-2 
[cos Q1 + e  - le (sin 8+e ) de - f ] dQ+es  C 1 2 1 s l  C S 

l 1  

sin 8 * = sin 0 + e 

1-2 1-2 e 
c o s . e 2 * = c o s e  + e  -lee' [ s i n e  + e  +le ( c o s e + e  ) d e + g  S Id8 - E c  

1 C 
1 s1 1 c  

l 1  

2 where sin 8" and cos e2* are the obtained functions, while sin 8 and cos 8 2 2 

are the desired functions. 

1-2 1 4 2  Equations (2-6) and (2-7) can be solved only if  the functions and 5, S 

are known. However, it has been shown in Section 2.2  that only the average 

magnitude of the E's are known. The analysis must therefore be restricted to 
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the study of the propagated error ,  independent of the e r r o r  sources. In this 

case, Equations (2-6) and (2-7) become 

1 
2 

sin 0; = sin 8 + e  + e  (e2 - e,) - 
1 C s1 

2 cos = COS e2 + e  - e (e2 - el) - 
1 S c1 

observing that e = sin 9* - sin g2 
2 2 S 

and 2 e = cos - cos 9 
2 C 

Equations (2-8) and (2-9) can be rewritten as follows: 
2 

e S. (9, - 9,) 
1 e - e  = e  (e2 - 8,) - 

2 1 C 1 S 2 S 

1 
2 

e - e  = - e  (e2 - 0,) - 
1 S 1 C 2 C 

(2-9)  

(2-10) 

(2-11) 

Equations (2-10) and (2-11) can be approximated by the differential equations 

e de2 
1 
2 

S 

des = ecdO - 

e de2 
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2 The de terms are negligible, as compared to the others, thus 

de  = e  de (2-12) 
s c  

de = -e de . 
C S 

(2-13) 

where the equations of a sine-cosine generator are recognized. The solutions 

are 

(2 - 14) e = C sin (0 + @) 
S 

e = C cos (8 + #) . 
C 

(2-15) 

2 . 3 . 2 .  Erro r  Prediction For The Free-Running Sine-Cosine Generator. Equations 

(2-14) and (2-15) show that, for a given initial e r ro r ,  es, and corresponding e 

in quadrature, the e r rors  will propagate as two sinewaves in quadrature for e 

and e without change of the peak amplitude, 6 .  However, the problem con- 

ditions are different since initial e r rors  are not necessarily in quadrature and 

source e r ro r s  introduce constantly new initial e r ro r s  in a more o r  less random 

manner. 

C 

S 

6’ 

It means that e and e should consist of two nearly sinewaves in quadrature, 

the basic frequency being that of the sine-cosine generator. 
S C’ 

S C 
where e leads e 

However, there will be phase and amplitude variations corresponding to the 

irregularity of the truncation e r ro r .  Over a sufficient number of revolutions, 

the e r ro r  curve (near sine wave) amplitude will fluctuate, with an expected 

value corresponding to the average e r ror  source amplitude computed in Section 

2 .2 .5  to be 38 pulses after 20 revolutions. The peak amplitude fluctuation limits 

are zero and worst-case e r ro r .  The worst-case e r ro r  in this example is 

= 320 pulses. 
- (0.9) (17) (80) + 6 + 40 

T max + E + e ~ ~ m a x  4 e (smoothing) = 5 
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And 

o r  

tion 

for 2-bit smoothing; total source e r ror  (smoothing) 

E + €  +eSR 
4 

B (smoothing) < T (2-19) 

- 
eT(smoothing) < 29 pulses . 

Worst-case e r ro r  peak amplitude is computed by linear addition of trunca- 

and sign -reversal e r rors  and the integrand quantization e r ro r  remains 

unchanged. 

= 250 pulses . - e (smoothing) < (0.7) (17) (80) + 3 + 40 
4 T (2-20) 

2.4 Direction Cosines - Erro r  Prediction In the General Case of 3-Angle Variations 

2.4.1 Er ro r  Sources. The error sources are identical to those found in the 

sine-cosine generator. The following program will be analyzed. The driving 

angles are: 

el = 112 e2 

8 =Reference 2 

9 = 1/4 €I2 3 

1' 
8 is driven from 0 to 130 radians. An inspection of the  solution shows that a 

a 

a 120" phase shift from one to another. (Program Run 3.108) 

2 

2' 3 a are periodic functions of equal frequency, similar to sine waves and with 

a varies from -0.65 to + 0.9 of full scale; -a = + 0.1 1 1 

a varies from -0.2 to +0.63 of full scale; a = + 0.2 2 2 

a varies from -0.8 to + 0.9 of full  scale; ;T = + 0.05. 3 3 
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There are 23 revolutions of the direction cosines, where 8 is driven from 0 

to 125 radians. The e r ro r  sources will be 
2 

(a) Truncation Errors  

2 2 2 I 
(17) [ (0.65) +(0 .9)  ] 46 = 130 pulses 

‘a 1 

2 2 2 I 
(17) [ (0.2) +(0.63) ] 46 = 77 pulses 

2 5a 

= d (17)2 [ (0.8) + (0.9)2] 46 = 142 pulses 
3 5, 

(b) Integrand random quantization e r rors  

1 125 = -  E = 4.2 pulses a ly82  6 2  d(48)(1.55) 

= 1 pulse E 1 31 a l ,  Q3 = - 
fi d(48)(1.55) 

= 3 pulses 1 62 = -  E 

a2’81 f i  d(48)(0.83) 

= 1.5 pulses 1 31 =- E 

a2’03 f i  d(48)(0.83) 

= 2 pulses E 1 62 a3, Q1 = - 
f i  EJ (48) ( 1.7) 

(2-21) 

(2-22) 

= 4 pulses . E 1 125 a3, GI2 = - 
6 2  d(48)(1.7) 
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(c) Integrand sign-reversal e r ro r s  

e = E 7 pulses for each multiplier. SR 

(d) Total source e r ro r  

B (a input) = 1.5 + 4 + 14 + 77 + 142 = 238.5 pulses T 1  

E (a input) = 2 + 1 + 14 + 130 + 142 = 289 pulses T 2  

- 
e (a input) = 4.2 + 3  + 14 + 130 +77 = 228.2 pulses T 3  

and assuming a 2-bit smoothing 

- e (a,) = 60 pulses T smoothing 

(2-23) 

(2-24) 

- 
e (a ) = 72 pulses T smoothing 2 

- e (a,) = 57 pulses . T smoothing 

2.4.2 Er ro r  Propagation. An inspection of the DO direction-cosine program 

makes an evaluation possible of the e r ro r  -propagation equations similar to 

11’ a21’ those for the sine-cosine generator described in  Section 2.3.1. 

a 31 
and a 

Let a 

be the values of direction cosines at the beginning of a computation interval, 

the values of the same direction cosines .at the end of the 12’ a22’ a32 
computation interval. The asterisk (a 12 
indicates the  desired value. e , e . . . etc., designate the  e r rors  on 

a 

the  value of a at the  beginning and end of the  computation interval. Only 

the e r ro r  propagation is evaluated; e r ro r  sources will not be introduced into 

the equations. 

*) indicates the DO value and no asterisk 

11 12 a 

1 

2- 10 



After reduction and elimination of the second order terms, 

a* - a  = e  + e  (832 - 831) - ea @22 - e21) 21 31 12 12 all a 

similarly for the other direction cosines 

12 22 a21 a 31 (el2 - ell) - ea 11 ('32 - '31) a* - a  = e  + e  

a* - a  = e  + e  (e22 - (321) - ea (el2 - ell) 
11 21 a 31 32 32 a 

Using the approximation of differential equations, it results in 

d ( e  ) = e  de3 - ea de2 
2 3 a 1 a 

d (e ) = e  del - ea de3 
2 a3 1 a 

d (ea ) = e 
3 

de2 - ea del 
1 2 a 

(2-25) 

where the equations of the direction cosines are recognized. The interpretation 

will be similar to that developed for the sine-cosine generator. For  a given 
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set of initial e r rors ,  e , e , e , the e r ro r s  will propagate like the three 
a a a  1 2 3  

direction cosines without change in amplitude. In the problem conditions, where 

irregular truncation e r ro r s  are generated throughout the computatim, the basic 

frequency of the three e r r o r  signals will vary, although their relative phase sh i f t  

will remain close to 120". The peak amplitudes grow irregularly with 0; the 

expected peak amplitudes will be, after a variation of 0 from 0 to 125 radians. 2' 

iZ (a ) = 60 pulses T 1  

E (a ) = 72 pulses T 2  (2-26) 

- e (a ) = 57 pulses . T 3  

Similarly to the direction cosines themselves, these e r ro r s  will be biased in 

one direction. However, the statistical approach to the e r ro r  prediction does 

not permit a prediction of the sign and amplitude of this bias. An upper limit 

on this bias e r ro r  is known, since Eq. (2-26) includes this bias value. The 

worst-case e r ro r  peak amplitude will be 
0 

4 . 2 + 3  + 2  ( 4 6 ) + 6 6 ( 1 3 0 + 7 7 )  = 375 pulses. e (smoothing, a input) = 4 T 3 

(2-27) 

2 .4 .3 .  E r r o r  Prediction for Limit Cycles of the Direction-Cosine Generator. The 

discussion of Section 2.3.3,  i n  the case of the sine-cosine generator is also 

applicable here .  A reduction of the e r r o r  may occur due to partial reversibility 

of the DO multiplier circuit. Magnitude of the e r ro r  reduction is not possible 

at this time on an analytical basis; however, a limit of the average e r ro r  magnitude 

can be predicted. 

Let's choose the example of the  direction-cosine generztor where 8 8 8 1' 2 3 
are driven at the same rate. T h e  source e r ro r s  after 20 cycles of k 1 radian 

amplitude will be estimated as follows 
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2 2 
zd(O.5) (4)(20)(17) = 76 pulses 

1 
‘a 

= 3.7 pulses E 1 80 a .  0. = - - 
I ’  f i d @ y @ q  

e (a.) = d(2)(20) = 6.3 pulses SR 1 

The total e r ro r  source will be 

(a.) = 2 (76 + 3.7 + 6.3) = 172 pulses T i  

and if  a two-bit smoothing is used 

- 172 
e (a. smoothing) = -T= 43 pulses . T i  

(2-28) 

(2-29) 

(2-30) 

(2-31) 

(2-32) 

Therefore, i f  some reduction of the e r ro r  is introduced through partial 

reversibility, Eq. (2-32) becomes 

- e (smoothing, a.) < 43 pulses . T 1 
(2-33) 

The e r r o r  curve equations, being similar to the direction-cosine equations, will 

consist of segments of three biased, near sine waves, with a 120° phase shift 

from one to another. 

The worst-case e r r o r  peak amplitude will be: 

= 362 pulses . (2-34) - 2(76d% +3.7 +40) e (smoothing, a ) = 4 T 3 

2.5. Comparison of E r r o r  Prediction and Experimental Data 

This comparison will be best conducted by setting up the following table. 
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- 17 2 
e (a. smoothing) = T =  43 pulses . T i  

(2-28) 

(2-29) 

(2-30) 

(2-31) 

(2-32) 

Therefore, if some reduction of the e r ro r  is introduced through partial 

reversibility, Eq. (2-32) becomes 

(2-33) 
- e (smoothing, a.) < 43 pulses . T 1 

The e r r o r  curve equations , being similar to the direction-cosine equations , will 

consist of segments of three biased, near sine waves, with a 120' phase shift 

from one to another. 

The worst-case e r r o r  peak amplitude will be: 

= 362 pulses . (2-34) 
- 
e (smoothing, a ) = T 3 

2(76 d% + 3.7 + 40) 
4 

2.5.  Comparison of E r ro r  Prediction and Experimental Data 

This comparison will be best conducted by setting up the following table. 

2- 13 



Table 2-1. Comparison of E r ro r  Prediction and Experimental Data 

PROBLEM RUN 

Sine -Cosine Generator 

Free -running a t  fre - 
quency fo for 20 revo- 
lutions 

2 -bit smoothing 

Sine -Cosine Generator 

Limit Cycles 
k 1 Radian, 20 cycles 
basic frequency f . 

0 

2 -bit smoothing 

PREDICTED ERROR 

2 Pseudo-sinewaves in  
quadrature of increas - 
ing amplitude at  a fre- 
quency f e f . 
Small variations of f .  

0 

Irregular peak ampli - 
tude growth. 

Expected peak ampli- 
tude after 20 revolu- 
tions: 

e s i n e - e  cos6  = 3 8  
P P 

pulses 

(e) Maximum peak ampli- 

e max = 320pulses 

tude: 

P 

(a) 2 segments of pseudo- 
sine waves in quadra- 
ture and of increasing 
amplitude. 

(b) Small phase variations. 

(c) Peak amplitude varia- 

(d) Expected peak ampli- 

tions. 

tude after 20 cycles. 

EXPERIMENTAL ERROR 
Program Run 1.101 

2 Pseudo-sinewaves in 
quadrature of increas - 
ing amplitude at a fre- 
quency f e fo. 

Small variations of f .  

Irregular peak ampli - 
tude growth. 

Peak amplitude after 
20 revolutions: 

e sin 0 = e cos0  = 47 
P P 

pulses 

Program Run 1.108 
(a) 2 segments of pseudo- 

sinewaves in quadra - 
ture and of increasing 
amplitude. 

Er ror  curves are biased. 
and quite irregular; peak 
amplitude of the e r r o r  at 
10 cycles = 1.5 times 
peak e r r o r  amplitude at 
20 cycles. 

Peak amplitude after 20 
cycles 

e 0 e e cos 0 = 8 pulses. 
P P 
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Table 2-1. Comparison of E r ro r  Prediction and Experimental Data (Cont) 

PROBLEM RUN PREDICTED ERROR EXPERIMENTAL ERROR 

Direction -Cosine 
Generator 

Free running at  fre- 
quencies: 

2 fo for 6 

1 

3 

f0/2 for 6 

f0/4 for 6 

al, a , a are 120° 
phase -shifted, positive - 
biased sinewaves of fre- 
quency fo (23 cycles for 
a variation of 6 2  of 125 
radians). 

2 3  

2 -bit smoothing. 

e s i n 8  = e c o s e  < 
P P 

29 pulses 

(e) Maximum peak 
amplitude 

e < 250 pulses. p max 

(a) Three 120° phase- 
shifted biased pseudo - 
sinewaves of increasing 
amplitude, at  a fre- 
quency f = f . 

0 

(b) Small variations of f .  

(c) Irregular peak ampli- 
tude growth. 

(d) Biased e r rors .  

(e) Expected peak ampli- 
tude after 8 2 = 125 
radians. 

ep (a,) = 61 pulses 

Ep (a,) = 74 pulses 

e (a ) = 58 pulses 
P 3  

2-15 

Program Run 3.108 

Three 120° phase-shifted 
biased pseudo-sinewaves 
of increasing amplitude, 
a t  a frequency f = f . 

0 

Small variations of f .  

Irregular peak ampli - 
tude growth. 

E r ro r s  negatively biased. 

Peak amplitude after 
9 2  = 125 radians. 

e (a,) = 61 pulses 

e (a ) = 54 pulses 

e (a ) = 61 pulses 

P 

P 2  

P 3  



Table 2 -1. Comparison of E r ro r  Prediction and Experimental Data (Cont) 

PROBLEM RUN 

Direction -Cosine 
Genera tor  

Limit cycles 
8 k 1 radian, 20 
cycles 

2 

a , a , a are segments 
of the free -running 
direction-cosine curves. 

1 2 3  

2 -bit smoothing 

PREDICTED ERROR EXPERIMENTAL ERROR 

(f) Maximum peak 
amplitude 

c (a ) = 375 pulses 
P 3  

Segments of three 
120° phase -shifted 
biased pseudo -sine 
waves of increasing 
amplitude at a fre- 
quency f -  f . 
Small phase variations. 

0 

Irregular peak ampli - 
tude growth. 

Expected peak ampli - 
tude after 20 cycles 

F ( a ) = E  ( a ) = F  ( a )  
P 1  P 2  P 3  

< 43 pulses 

Maximum peak amplitude 

e (a ) < 362 pulses 
P 1  

(f) Maximum peak 
amplitude 

e (a ) = 215 pulses 

(Data Run - 3-208) 
P 3  

Program Run 3.103 

Very irregular e r ro r  
curves somewhat 120" 
phase shifted. 

Large negative bias in- 
creasing with peak ampli- 
tude and with 92. 

Peak amplitude after 
20 cycles: 

e (a ) = 23 pulses 
P 1  

e (a ) = 27 pulses 
P 2  

e (a ) = 17 pulses 
P 3  
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2.6. Reversible Commtation For Small Limit Cvcles 

The semi-statistical approach to the e r ro r  analysis does not permit 

reversibility prediction of the computation, however, as discussed in 2.3.3 

at least partial reversibility can be expected. Complete reversibility means 

that, starting from an initial condition for the three direction-cosines a 

a , and the three angles, €Ilo, 

return to the same values, alO, a20, a30, after =variations of the angles 8 

8 8 , when these angles come back simultaneously to the initial value €I 2’ 3 

‘20’ ‘30 
no complete reversibility for the DO implementation of the direction-cosine 

problem, however, partial and perfect reversibility have been observed for 

small angle variations in the following conditions: 

10’ a20’ 
the direction-cosine counters will 30 

1’ 

10’ . Simple experiments proved that for large angle variations, there is 

Data Run 3.105 (direction-cosine): The three angles, 9‘ , 9 , 8 , are driven 

simultaneously on constant amplitude cycles of k 1/64 radian amplitude. The 
1 2 3  

values of the direction-cosines, a , a , a , repeat exactly a t  each new cycle 1 2 3  
(Table 2.2). 

Data Run 1.110 (sine-cosine): The angle 9 is driven randomly positive and 

negative with a limit maximum amplitude, 8 ; there a r e  approximately 30 sign 

reversals of 8 per machine run. 8 is then driven to the initial value, 8 

the final values of sin €I and cos e a r e  compared to the initial value. The values 

of sin 8 and cos 8 repeat exactly in the following conditions: 

m 

m 
and 

0’ 

0 
e - e - 

1/64 radian 0 radian 

1/32 radian 3.5 radian 

1/32 radian 5.25 radian 

1/32 radian 5.75 radian 

For other initial conditions, there is no exact repeatability for angles larger 

than 1/128 radian; however, the e r rors  remain small. Repeatability has not 

been checked for angles less than 1/128 radians. 
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Results from these experiments demonstrate that the computation is either 

reversible o r  near reversible for small angle variations. More data would be 

desirable to refine the study of reversibility in the case of small random variations 

of the angles as  it is an important feature for attitude computation and similar 

applications. 
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' 3.0 MEDOC SIMULATION, TASK I1 

MEDOC, a - Modular -Expandable, - - Digital-Operational - - Computer breadboard, 

is illustrated in the photograph, Figure 3.1. The machine consists of a com- 

puter rack and control rack. The computer section contains four drawers that 

can accommodate five, 20-bit counters per drawer. Space is also available to 

plug-in other operational blocks such as pulse multipliers, pulse adders, delay, 

and decision units. The control section contains an input keyboard for purposes 

of resetting and initializing the computer, a clock-slot generator and control 

circuitry for printout, and program control. In addition, a D/A converter, 

X-Y plotter is available for connection to the computer for graphical outputs. 

The computer program is patched by connecting cables between operational 

blocks at terminals on the right-front side of the computer rack. Scaling is 

accomplished by plug-in connectors, which are located on the right side, and 

clock and data inputs which are connected to the left-front side of the computer 

rack. The circuitry is designed for 5-Mc operation. 

3.1 Statement of the Problem 

The attitude computation in a typical strap-down system is illustrated in 

Figure 3.2. It is assumed that the gyro resolution is between 2-11 and 2-20 

radians per pulse and a maximum sensing rate of 60 degrees per second. The 

integrating accelerometers were assumed to have a 0.1 foot per second per pulse 

resolution. 

The incremental changes of the direction cosines are related by the follow- 

ing equations: 

- a  A0  -a A e  Aal -  2 3 3 2 

A a  = a  A0  -a A e 3  2 3 1 1  

A a  =alAO -a A0  3 2 2  1 

3-1 

(3-1) 



Figure 3 . 1  MEDOC (Modular-Expandable, - - Digital-Operational - - - Computer) Breadboard 
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Figure 3 . 2  Strap-Down Sys tern Attitude Computation 
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= b  A 8  -b A 9  2 3 3 2 

- 
V I  

V I  

V I  

X 

Y 

z 
L 

= b A 8  -b A 0  Ab2 3 1 1 3 

Ab3 1 2 2 = b A 8  -b A@, 

V B  

V B  

V B  

-I 

X 

Y 

Z 
-L 

=c#e -c A 8  
A c1 3 3  2 

Ac2 3 1 1 3 

= c  AEI -c ~ e ,  Ac3 1 2 2 

= C  A 8  -C A 9  

(3-2) 

(3 -3) 

The transformation from body frame to inertial reference frame, of the 
B velocity vector A V ,is given by: 

o r  

ai a2 .3] 

bl b2 b3 

c c c  1 2 3  
. - i  

B 
Z 

AVx I = alAVx B + a2AV + a3AV 
Y 

Y Y 
B 

Z 
AV I = blAVx + b2AV + b3AV 

(3 -4) 
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3 . 2  MEDOC Program 

As far as the MEDOC program runs are concerned, it was only necessary 

to program the set of equations in (3-1) and the first equations of set (3-4). This 

is true, since they are independent of the other equations Conceptually, three 

sequential machine runs with the identical input variables and new initial con- 

ditions for the direction-cosines and velocity equations will simulate the total 

set of equations. Figure 3.3  illustrates the MEDOC program. Note that only 

three counters are needed for the three direction-cosine generators. The three 

A 8 counters (independent variable) are shared with the direction-cosine counters. 

Thus, for nine direction-cosines, only 12 counters are needed as opposed to the 

DDA requirement of 18 registers. 

Program sets numbered 1 .OOO through 4 .OOD were generated to investigate 

one angle, two angle, three angle, and velocity inputs. Tables B. 1 through B.8 in 

Appendix B summarize the results of the program runs. Appendix B also contains 

the pertinent e r r o r  curves as discussed in this report. The range and resolution 

of variables are as follows: 

0 <a i  .I 1.0 

0 5 €Ii 

0 < V  I 

A Qi = 2 radians 

A viB 

<_ 126 radians 

5 3276.8 ft./sec. 
X 

- 15 

= 0 . 1  f t .  sec. 

The MEDOC machine units (mu) are: 

[e] mu = 1 radian = 2-15 radians 

Pulse Weight = 0.1  ft./sec. I f V] mu = 3276.8 ft/sec. 

= basic scale = 15 bits n 
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Figure 3 .3  MEDOC Program 
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It should be obvious to the reader that, due to time considerations, an exhaustive 

number of program runs to investigate the effects of changes in initital conditions 

and relative data input rates is an impossibility. Thus, it became necessary to 

select a sufficient number of typical programs based upon past experience. For 

example, it is known that the DO technique is more "error sensitive" to initial 

conditions around mid-scale of a counter; hence, initial-condition considerations 

were concerned with this fact. I t  is also known that the relative rate between the 

code and variable input of the pulse multiplier is a factor which affects the e r r o r  

curve, and this too was a parameter to be programmed. Basically, two types of 

programs were run, insofar as the direction-cosine computer was concerned. 

First, rotations both clockwise (+) and counterclockwise (-), up to 126 radians 

were run. Secondly, limit cycles with amplitude variations from 2-l5 to 2 radians 

up to 20 cycles were also run. Insofar as the velocity runs were concerned, atten- 

tion was directed to programming velocities in terms of ascent missions. 

Since only a simple multiplication and addition is required, Eq. (3-4), not many 

programs of this type were run. Program set #1 contained 11; program set  #2 

contained 9; program se t  #3 contained 20, and program set #4 contained 6 pro- 

gram runs for a total of 46. Appendix B summarizes and tabulates the results 

of all the program runs. E r r o r  curves pertinent to this report are also included. 

Copies of those e r r o r  curves which are not included herein can be obtained by 

writing to the Program Manager. Their usefulness is evident when comparing 

the DO technique with results of other special-purpose computer techniques. 

3 . 3  Scaling and Smoothing 

The important element in a digital-operational system is the pulse multiplier. 

This operational unit is designed to scale down an input pulse train that is equal 

to the product of the number of input pulses (multiplicand) and a numeric code 

(multiplier). If a pulse train of frequency f is applied to the f i rs t  binary scaler 

so that x pulses occur in a given time interval, the scaler outputs of each binary 

during the interval in which x input pulses arr ive are x/2, x/4, x/8.. . . .x/2n 

pulses, The sum can be expressed as: 
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n 

a3 c 1 i=l 
(3-6) 

Therefore, a scalar output must occur for each input pulse. These scaler 

outputs are applied to gates which are opened o r  closed according to the multi- 

plier y, where 
n 

The outputs of the gates are combined to yield a sum of pulses 

which is actually the product of xy 

n 

z =  XY = c  
1 

n X a  

Zn 

n a 
= x x  f 

1 
(3-9) 

It should be recognized that y is always less than unity. 

The relationship, Equation (3-9), is exact as indicated when x is a multiple 

of 2n and when y is a constant over that interval. If y changes slowly, compared 

to the pulse rate of x, the multiplication is approximately correct.  With reference 

to the timing diagram, Figure 3.4, it can be shown that the output pulses are 

asynchronous, and instantaneous e r ro r s  exist during the binary timing interval. 

For  example, i f  we consider a 4-stage multiplier and y = 10, then an output of 

10 pulses results for every 16 pulses on the input. 

3 -8 



X I I I I I I r I I I I I I I I J 

X I I I I I I 1 I - 
2 

4 

X I - I 
8 

16 

MULT x Y 

FOR YZ- 
16 
10 I I I I 1 I I I I I 

0 

OESIFPED 

FUNCTJON 
------ 

GENERATCD 
FUNCTION 

X- 

Figure 3 .4  Pulse Multiplier Timing Diagram 
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To improve the asynchronous performance of the multiplier, the input fre- 

quency may be increased by some binary multiple and then the output divided by 

this same multiple, Figure 3.5. 

The improvement in accuracy in the order of three due to smoothing is 

demonstrated in Figure 3 . 6 .  This figure illustrates the e r ro r  curve of the sine- 

cosine generator during a limit cycle program (Program Run 1.108) of f 1 radian 

amplitude over a period of 20 cycles. Smoothing was accomplished by upscaling 

the input angular pulses by a factor of four, and then dividing by four when read- 

ing the direction-cosine counters. The factor of four was selected as an optimum 

choice based upon past experience. A factor of eight would not increase the 

accuracy sufficiently, compared to a factor of four, to warrant the additional 

bit in each counter. Thus, it was decided that smoothing was warranted and 

the additional bits were added to the basic counter scale. It was also decided 

to scale each of the direction-cosine and initial-velocity counters to 0.9 to pre- 

vent overflow. 

3.4 Initial Conditions 

The computation for initial conditions was based upon the well-known relation- 

ship between the direction-cosines and the Euler angle transformations: 

a = C J b C y  1 

2 a = C j ! ) S y S + - S @ C +  (3-10) 

a = C fl S y  C + + S  Jb S + 3 

where p! (Yaw), Y (pitch), and + (roll) represent the Eulerian angles and al ,  a , 2 
and a are the direction cosines for X ,one of the body axis coordinates. Thus, 

Eulerian angle initial conditions were assumed, the direction cosines computed, 

and the MEDOC initialized to these values. 

B 
3 
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Figure 3.5  Pulse Multiplier Output with Digital Smoothing 

3-11 



- -.- 

LOTH CYCLE IOTH CYCLE 

sr) . 
1 :  + I  0 - I  0 0 +I 0 - I  

I I I I I 1 
0 

c I I I 

'1 - SMOOTHING 

IOTH C Y C L E  LOTH C Y C L E  
M 

0 
1 

+I 0 - I  0 0 +I 0 -I  
-*- .#A I I I I I I I 

0 
I 

Figure 3.6 Sine-Cosine Er ro r  Curve - Smoothing vs . Non-Smoothing 

3-12 14 



P R O G R A M  R U N  1.108 

S M O O T H I N G  ( 2  B I T S )  

ooTH CYCLE IOT" CYCLE 

- I  0 0 + I  0 - I  0 0 + I  0 - I  0 - I I I I I 1 I I I J 

N O N  - S M O O T H I N G  

lOTH CYCLE tor" CYCLE 

- 1  0 0 +I 0 - I  0 0 + I  0 -I 0 - I I I I I L 1 I 1 

Figure 3.6 Sine-Cosine E r r o r  Curve - Smoothing vs . Non-Smoothing 

3-12 



lsT CYCLE eN0 CYCLE 

s 
2 
‘ u o  

R A D I A N S  Q -10 

0 
t 

0 0 0 +I + I  - I  
I I I I I I 

0 
I - 01 (COSINE) - Os ( S I N E )  

-50 J 1 9 ~  CYCLE 

RADIANS 
0 + I  0 - I  
I I I I 

0 
1 

ZNO CYCLE 

0 +I 
I 1 

0 
I 



4 .O 

4 . 1  

ESTIMATE OF AN AIRBORNE COMPUTER -TASK 111 

Basis of Estimates 

The estimates which follow were prepared for a flyable computer implement- 

ing nine direction cosines, operating from asynchronous input pulses represent- 

ing angular increments. Two bits for smoothing and upscaling at the inputs are 

included. Outputs provided are pulse increments for inertial velocity components; 

parallel binary code values for the direction cosines are also available. 

All the counters have independent DC reset inputs not used for any other 

purpose. No specific method of initialization has been included, yet it seems 

likely that a serial input method using direction-cosine code feedback would be 

adequate and would involve very little additional circuitry. Some means of 

memory - in the event of power failure - may be advisable, but has not been 

provided for in this computer. 

It was determined that a 3-slot clock generator would be adquate  for the 

computer, and this has been included. The requirements and characteristics 

of the associated power supply have also been estimated, and these appear on 

the graphs below. 

4 .2  Summary of Results 

Figure 4 . 1  shows the clock performance capability of each of the four 

computers projected as a function of the angular increment selected. Computers 

T-1 and T-2 utilize Texas Instruments Series 51 integrated circuits, while Com- 
puters F-1 and F-2 use Fairchild Micrologic. The ascending sequence of clock 

frequency capability is evident. 

Figure 4 . 1  also shows the clock frequency performance requirement as a 

function of angular increment for various full-scale angular rates. This require- 

ment is determined by the relation: 

(4 - 1) Angular Rate X Smoothing Factor X No. of Slots 
Angular Increment Clock Frequency 2 
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Figure 4 . 1  Clock Performance Profile 
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Comparison between the two sets of curves shows that computer T-1 can 

handle 2-13 radian increments at 20 deg/sec, involving a clock frequency of 40 Kc.  

Similarly, 2-15 radian is handled by T-2 a t  160 Kc, 2-17 radian by F-1 at 720 Kc, 

and 2-18 radian by F-2 a t  1.3 Mc . 
The component count for these computers is shown in Figure 4.2. About 

90% to 95% of the count comprises integrated circuits, so that these figures can 

be used to obtain failure rate estimates from the appropriate basic data. Com- 

puter F-2 differs from F-1 by using standard micrologic instead of Milliwatt 

Micrologic, and therefore has the same component count. 

Figure 4.3 shows the power drain for each computer, both including and 

excluding power supply. Each computer uses two regulated supply voltages, 

+3V and +6V, with virtually all  the load a t  the lower voltage. The power drain 

of the F -2 computer is very large compared to the others. 

The weight and volume estimates are shown as Figures 4.4 and 4 . 5 .  The 

F-2 computer was projected using the TO-5 element package, due to power 

dissipation considerations. The F - 1 computer uses the square Fairchild flat 

package. For these reasons, the weight and volume of the F-2 computer a r e  

extremely large compared to the others. 

All four computers have been projected in terms of seven to nine types of 

encapsulated subassemblies of identical size and shape. The quantity of sub- 

assembly modules varies from 32 for T-1 up through 80 for F-2. Provisions 

have been planned for access to and replacement of these modules. I 

The compocent count breaks down into six to nine types of integrated circuit 

elements and three to six generic types of discrete components. The T-1 computer 

consists of three standard integrated circuit elements (SN514, SN515 and SN518A), 

three custom elements (SN415-417) and s ix  generic types of discrete components. 

The T-2  computer has three additional integrated circuit elements in addition to 

the component types used in the T-1. 
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The F-1 computer consists of seven Milliwatt Micrologic elements (900, 

909-913-921) and three types of passive discrete components. The F-2 

computer comprises nine Micrologic elements (900, 904, 907, 909-11, 9 13 

914 and 916) and three types of passive discrete components. Block diagrams 

showing the logic arrangement for all four computers appear in Appendix C. 

Discrete component usage is confined to the clock slot generator, which 

includes an as table multivibrator and consists of one encapsulated subassembly. 

Power requirements for the T- 1 computer are 1.4A at +3V -0, +6% total 

regulation (line, load, temperature, setup and aging), three ohms maximum 

source impedance (DC through 2 Mc); and 0.12A at +6V +O, -6% total regula- 

tion, 50 ohms maximum source impedance. The T-2 computer requires 2.4A 

at +3V -0, +6% total regulation, one ohm maximum source impedance; and 

0.1A at +6V +O,  -670 total regulation, 30 ohms maximum source impedance. 

The F-1 computer requires 10A at +3V +5% total regulation, two ohms 

maximum source impedance (DC through 10 Mc); and 0 .O 1A at +6V +_5% total 

regulation, 100 ohms maximum source impedance. The F -2 computer requires 

40A at +3V 28% total regulation, two ohms maximum source impedance (DC 

through 20 Mc); and 0.01A at +GV, as for the F-1. 

The associated power supply projected for use with these computers com- 

prises 46 discrete components, is planned as an adjacent assembly, and operates 

from +27V +4V primary power. Its efficiency ranges from 66% with the T-1 

load to 71 with the F-2 load- 

4.3 Interpretation of Results 

The above results define the penalties attached to improved performance in 

terms of four selected computer configurations. The reasons for their selection 
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and the underlying technical factors will be examined, in order to provide a 

background for considering the effects of alternate and future developments in 

integrated-circuit technology. 

Computer T- 1 uses the smallest possible quantity of presently-available 

integrated circuits to implement the desired functions, as far as we know, and 

therefore offers the best reliability potential. Although clock frequency capability 

of this computer (see Figure 4.1) is limited, the power drain and weight appear 

to be the lowest achievable using integrated circuit lines presently in production 

and generally available. Advantage has been taken of custom interconnections 

using the Texas Instruments Series 5 1 Master Slice. The recently -announced 

Series 53 has higher speed and many more equivalent parts per package, but 

these potential advantages are partially offset by the lower resistance values 

and smaller quantity of capacitors. 

Computer T-2 provides an improvement in clock frequency capability over 

Computer T-1 by substitution of look-ahead carry for ripple carry in the forward- 

backward counters. The added component count, power drain and weight a r e  

quite moderate. A substantial additional improvement in clock capability appears 

feasible by turning to the Series 53, at the cost primarily of a substantially in- 

creased power drain. It appears unlikely that any clock frequency improvement 

over the T-2 can be obtained using the Series 5 1. 

Computer F-1 uses what is believed to be the smallest number of standard 

Fairchild integrated circuits needed to implement the desired functions. It was 

decided to avoid custom Fairchild designs because of the extensive mask prepara- 

tion and production tooling involved; custom design would reduce the component 

count only about 20 percent. The presently marketed Fairchild flat package is twice 

as wide and 1.5 times as thick as the Texas Instruments flat package, so a 

significant volume and weight penalty results. The clock frequency capability, 

however, is substantially improved over the T-2 computer, in approximate 

proportion to the power drain increase. The dissipation density (power drain + 



' volume) is comparable with the T-2 computer, due to the use of Milliwatt Micro- 

logic. 

The F-2 computer provides nearly twice the clock frequency capability of 

the F-1 by making use of standard Micrologic. The component countiis essentially 

unchanged, but the guadrupling of the power drain is a major penalty. Dissipation 

density considerations raise the volume and weight to a point where the flat package 

is no longer of much advantage over the TO-5 style can. 

Other available integrated circuit lines were surveyed briefly to determine 

whether a better ratio of clock frequency capability to power drain could be ob- 

tained. The Sylvania line appears more advantageous than standard Micrologic, 

and suitable for the same clock frequency range. The other lines available in 

this frequency range, however, offer poorer performance ratios. For clock 

frequencies two to three times higher, only the Motorola MECL line appears 

to be adequate, in terms of presently marketed monolithic silicon integrated 

circuits. The performance ratio for the Motorola line is intermediate between 

the Sylvania and s h d a r d  Micrologic values. 

The general speed-power limitation evidenced in present integrated-circuit 

lines is somewhat amenable to circuit design ingenuity. It can be effectively 

removed to a significant extent in the future by better substrate isolation techniques 

which reduce s t ray capacitance materially, and also by improvements in diffusion 

techniques that make isolated complementary transistors available on a common 

substrate. 
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5.0 CONC LUSIONS 

The Er ro r  Analysis, Task I, resulted in a definition and mathematical 

model of the e r r o r  sources and e r ro r  propagation of the attitude computation 

problem. It was determined that only three e r r o r  sources need be considered; 

namely: truncation, integrand random quantization, and integrand sign -reversal 

e r rors .  A special error-propagation formula was derived as it  was found that 

the general method, as described in the Appendix, was not applicable. This 

is due to the fact that the e r r o r  sources were larger than the e r ro r  build-up 

through e r r o r  propagation in the closed -loop attitude computation. It was also 

determined that the integrand biased quantization source e r r o r  can be neglected 

since, in the negative -feedback closed -loop program the e r ro r  will not grow to 

more than 2 pulses. The e r r o r  -propagation analytical model was derived inde- 

pendently of the e r ro r  -source equations. Upon application of the e r ro r  p ropa  - 
gation equations alone it was found that pseudo -sinewave curves were generated 

with undetermined peak amplitudes. In order to ascertain the values of the peak 

amplitudes, the e r ro r  -source equations were utilized. It was impossible to pre - 
diet the bias of the e r ro r  curves due to the lack of knowledge of the boundary eon- 

ditions of the differential equations which describe the e r ro r  curves. 

The e r r o r  analysis is more applicable in those cases where the dynamic 
- 

range of the inputs (number of plses of the independent variable Aei) is several 

orders of magnitude greater than the number of sign reversals of the integrand. 

The predicted e r r o r s  versus the experimental results as found in MEDOC 

Simulation, Task 11, demonstrated fairly good agreement in those cases which 

were investigated. Figures 5 . 1  through 5 .3  illustrate the expected and worst - 
case values of the e r ro r s  within 20 revolutions/cyeles as a function of 2-11 to 

2-20 resolution angular inputs. The reader will note, after reviewing the figures, 

that the experimental. values were more nearly those of the predicted expected 

value than the predicted worst case. Since the experimental investigation was 

only concerned with 2-l’ radian input resolution and the number of programs 
. - -  
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run were limited, the "closeness of f i t "  of the mathematical models is difficult 

to assess. Obviously, more work in this area is required The importance of 

smoothing was demonstrated early in Task I1 and all results and conclusions as 

presented herein, include smoothing. 

E r ro r  analysis of the velocity equations did not appear to be warranted as 

the experimental results demonstrated negligible e r r o r s  in regard to the pro- 

grams run. Since a simple open -loop program consisting of multiplication and 

addition was involved, it was decided to spend most of the time investigating 

the direction-cosine computation. The results of the velocity programs, as 

illustrated in Appendix B, are exceptionally good inasmuch as a maximum pulse 

e r r o r  of 3 pulses was  observed. This indicates a maximum e r r o r  of 0.3 ft/sec. 

after a total change in body velocity of A V? = 2150 f t/sec. 

Estimates of an airborne computer resulted in four basic configurations ; 

two each utilizing the TI and Fairchild micrologic units. Today's state-of-the- 

art torque gyro resolution is in the order of 2"14 radians, and can be pulsed to 

sense 30 -degree -per -second body rates. Thus, the T -2 computer, as configur - 
ed in Section 4, is applicable to the present rate gyro inputs. This configura- 

tion implies a: 

Component Count: 2000 

Power Drain: 7 watts 

Weight: 8.5 pounds 

Volume : 180 cu.in. 

Predicted Expected Er ro r  after 20 Revolutions: 60 pulses 

Predicted Expected E r r o r  after 20 Limit Cycles (1 radian): 42 pulses 

(1/4 radian): 23 pulses 

(1/16 radian): 8 pulses 

The hardware specification tradeoffs are easily determined for any appli- 
-11 cation from 2 

rates by reference to Figures 4 . 1  through 4 .5 .  In addition, Figures 5.1 and 

to 2-20 radian input resolutions and up to 60" per second body 
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5.2 can be utilized to predict the expected and worst-case e r ro r s  within 20 

revolutions/cycles . Also available are the mathematical models that can be 

utilized for e r r o r  prediction of specific problem investigations. 

Although not part of the work statement, an attempt was  made to simulate 

a DDA rectangular integration algorithm on the IBM 1401 to compare the results 

with the MEDOC Runs. Due to time limitations and programming difficultites 

in terms of sequencing the arithmetic operations, the attempt proved to be 

unsuccessful. Although no conclusions can be drawn, two results are worth 

noting. Firs t ,  program run 2.101 comparison of simulated DDA versus 

MEDOC resulted in a 76 maximum DDA pulse e r ro r  versus a 27 maximum 

MEDOC pulse e r ror .  On the other hand, program run 1.101, a s  programmed 

on a TRICE DDA, resulted in a 33 maximum TRICE DDA pulse e r ro r  versus 

a 47 maximum MEDOC pulse e r ro r .  Obviously, more work has to be accomp- 

lished in the DDA area in order to arrive at realistic conclusions regarding the 

comparison of DDA versus DO. Nevertheless, LFE believes intuitively that, 

in terms of an e r ro r  analysis, both the DDA (Rectangular Integration) and DO 

techniques are in the same "ball park". It is suggested, therefore, that the 

advantage is in favor of the DO techniques due to the potential 25% reduction 

in hardware characteristics such as component count, power,weight, and volum . 
Final determination can be achieved by performing the same work tasks in a 

separate DDA study. 

The significance of this report is the fact that a DO specialpurpose com- 

puter can be specified for the attitude computation of a strapped-down guidance 

system. Specifications in terms of clock frequency, component count, power, 

weight, volume, and predicted expected e r ro r s  can be written knowing the input 

requirements such as angular and velocity resolutions, and body rates. Appli- 

cation of Figures 4.1 through 4.5 and Figures 5.1 and 5.2 allow the reader the 

facility of specifying a DO Computer for any attitude computation application. 

Recommendations for further work in this area are outlined in Section 6 .  
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6.0 RECOMMENDATIONS 

The study of the Digital -Operational Technique demonstrated i ts  applica - 
bility to the attitude computation of a strapped-down guidance system. How- 

ever, in the course of the work it became apparent that several areas require 

further investigation. Recommendations relating to these areas a r e  presented 

below. 

6 . 1  Study Areas 

It is suggested that further study be conducted to determine the "closeness 

of fi t" of the mathematical models and experimental results. Included in this 

study should be the investigation of reversibility of very small limit cycle am- 

plitudes over an extended number of cycles where the number of sign reversals 

is the same order of magnitude as the number of input angular pulses. It is 

this type of program that difficulty in applying mathematical models i s  expected. 

Either new models or  a pulse-by-pulse analysis may have to be utilized. Clock 

sequencing should also be investigated in an attempt to reduce the MEDOC e r ro r s  

as well as other methods of smoo-thing without the need of upscaling the input 

data rate. 

Comparison with other special purpose computer techniques, such a s  DDA, 

should be made based upon identical work tasks a s  applied in the DO study. 

6 .2  Hardware Areas 

It is suggested that both a breadboard and prototype DO attitude computer 

be built to demonstrate the feasibility of the packaging concepts as discussed 

in this report. The T-2 computer is recommended a s  i t  can be used with present 

state-of-the-art gyros and will provide a valuable simulation tool in t h e  laboratory. 
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APPENDIX A 

A. 1 DO PULSE MULTIPLIER ANALYSIS: CASE OF CONSTANT Y-COUNTER 

A. 1.1 The DO pulse-multiplier circuit, sometimes called BRM has been 

described in the literature (cf. bibliography) and is illustrated in Figure A. 1. 

An exact formula for the output number of pulses can be established in the case 

of a constant integrand Y = A. 

In order to derive an analytical expression of the number of pulses at the 

output of the multiplier, the number of X input pulses is best described by the 

polynomial 

j=O 

where N is an integer 30, and where the xj's can take on the value zero (0) 

or  one (1). The constant integrand, input A, to the multiplier is best described 

by its own binary code 

i=n-1 

i=O 

where any a. = 1 means that the corresponding AND gate of the multiplier is 

open to let the transition pulses of the (n-i) order counter stage of X go to 

the multiplier output OR gate. It can be easily shown that this number of pulses 

is given by the following expression for the output of the AND gate at a 

th 1 

i' 

+ NZn"' j -1 2O + 1 x.2 
pn-i-1) J 

j =n-i 

A- 1 

(A-3) 
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The summation of the pulses at the output of every AND gate a. = 1 will 

give the analytical expression of the number of pulses at the output of the multi- 

plier. Table A-1 relates the determination of the number of output pulses when 

adding the values found at the crosspoints of the selected a.'s and x.'s. 

1 

1 J 
The absolute e r ro r  at the multiplier output is the difference between the 

number of output pulses and the product A 0 X 2-". It is expressed analytically 

through use of identities A-1, 2, and 3 as in Table A-2 which can be used in the 

same way as Table A-1. An expression for the maximum positive absolute 

e r ro r  has already been developed, Reference 20. Use  of the series summation 

method shows that this maximum positive e r ro r  occurs after three quarters of 

full scale of both A and X, and has the value 

n 17 n 2-n - + - + ( - 1 )  - = E 6 18 9 

A similar series summation method shows that the maximum negative e r ro r  

happens in the vicinity of one third of full scale of both A and X. This maxi- 

mum negative e r ro r  has the value: 

n 8  n 2-" - + -  + ( - 1 )  - = E 6 9  9 

(A -4) 

The maximum positive e r ro r  is always larger than the maximum negative 

e r ro r  by the amount - pulse value. In particular, there is no e r ro r  when 

the independent variable reaches full scale. 

1 
18 

Table A-1 can be used to derive an analytical exact expression of the num- 

ber of output pulses for a typical function generation, where the integrand varies 

as a simple function of the independent variable (power function, exponential, 

sine, cosine, generator, etc). Two situations may occur during generation: 
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TABLE A-1 

PULSE MULTIPLIER OUTPUT 

--t- 
0 1 1  

1 1 

1 2 

a n-1 

1 

1 

2 

4 

2n -4 

2n -2 

(1) The independent variable advances one o r  several pulses fo r  
one increment of the integrand. Table A-1 then gives the num- 

ber of output pulses: 

where A. is the initial integrand. 
1 

(2) The integrand advances several increments (n) for one advance 

of the independent variable. Table A-1 gives the number of 

output pulses : 
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TABLE A-2 

PULSE MULTIPLIER ERROR OUTPUT 

0 a 1 a 2 a 3 a a n -3 a n-2 a n-1 - 
xO 

x1 

x2 

x3 

- 

- 
- - 
n -3 

X 

n -2 X 

- 
n -1 X 

N 
- 
TOT, - 

1 -- 
2” 

1 
2n - I  

- -  1 + -  
2 

1 
2n-2 

-- 1 
2n - C - -  1 

8 
- -  1 

4 
- -  

1 
4 

- -  1 + -  
2 

1 1 
2n -2 

-- 1 
p -3 

- -  0 2n - 1 

1 -- 
2n -2 

1 
2n -3 

-- 1 
2n - 4 

-- 0 0 

0 0 0 

1 
4 

- -  z 
2 

- -  0 0 1 
8 

- -  

1 
4 

- -  1 + -  
2 0 0 0 

1 + -  2 0 0 0 

0 0 0 0 0 0 0 
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p=n 

p=o 

the calculation will involve only summation of truncated series 

of the geometric type. 

However, the general case will not be handled easily with these formulae 

since the integrand driving function is not usally known exactly, pulse-by- 

pulse. Instead, typical worst-case e r r o r  build up bill be analyzed pulse-by- 

pulse, and the general case will be compared to those worst cases with the 

(A-7) 

introduction of form factor and statistical reductions. 
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A.2 DO WORST-CASE ERROR FORMULAE: CASE OF A VARYING Y-COUNTER 

tation 

The following analysis is purely deterministic and the worst case will always 

be considered, whatever may be its low probability of occurrence. It has been 

shown in the literature, Reference 21, that if the integrand oscillates around the 

1/2 full scale value, it is possible to get no output pulses. We shall use the 

equivalent statement. 

A.2.1.1 Rule: Every time the integrand reverses its direction of incrementation, 

it can result in one output erroneous pulse. For  the rest of the time, we shall 

deal with monotonic driving functions of the integrand. 

- 

A.2.1.2 Maximum Negative E r r o r  for Full-Scale-Change of the Integrand When 
Y Can Vary Faster Than X 

Such a maximum e r ro r  will be reached if the integrand goes to a maximum 

value after remaining as large as possible, without generating one output pulse, 

during the incrementation of the integration variable. Table A-3 illustrates 

this worst case for a 4-bit multiplier. The analytical expression of the maximum 

e r ro r  is derived from the following procedure. 

Starting from the bottom line of the Y-counter with a value 1011. . . 1, the 

Y-counter keeps its value until it reaches an X-counter transition gated with a 

bit one of the Y -counter. At this point, this bit becomes a zero and the bits to 

the right (LSB's) become ones, in order to insure no output pulse, yet a maximum 

Y -counter value. 

n-3 2n-(n-2) -2 - 1 
2" 

(Zn- l  - 2) + 2 (2n-2-2). . .+ 2P-1(2n-p-2). . .+2 

+ Z n - l  + 2n-2(22 -1). . .+ 2"-P 2p -1 - (2p-2 -1) . . . 
n-(n-1) n-1 n -3 + 2  2 - 1 - (2 - 1) + 1  2n-1 -1- (2n-2 -1) 
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= maximum negative e r ro r  in pulse value. After rearranging the terms, it 

becomes 

1 1 n- 1 n-2 
2 2n -3 (n-2) -2n-2 ( 1  +- +. . .+- )+ 2 + ~ ( n - 2 )  -2 (n-2) 1 

+2"-l -2 n-2} 

and, after simplification . . 
9 -n+l pulse value. 5 

4 4 Maximum negative e r ro r  = - n - - + 2 

For example: n = 4; e r r o r  = 2.8 pulse value 

n = 10; e r ro r  = 10.25 pulse value 

It can be seen that for the usual counter size, the maximum negative e r ro r  

is equal to the number of bits of the multiplier. 

We stated before that, at full scale, the e r ro r  would be 1 - 2-n, and, i f  

the independent variable cycles to full scale several times, no additional e r ro r  

will occur since the integrand is already at full scale and will not vary any further. 

A . 2 . 1 . 3  Maximum Positive Error  When Y Can Vary Faster Than X 

The integrand remains small, but catches the independent variable transitions . 
The procedure is as follows; the least significant bit of the integrand goes from 

zero to one, just before the transition of the MSB of the independent variable. 

It goes to zero again when the next MSB of the integrand changes from zero to 

one at the corresponding transition of the independent variable. Table A-4 

illustrates this worst integrand progression in a 4-bit multiplier. The analytical 

expression of this worst positive error for a n-bit multiplier is as follows. 

and, after simplification, 

pulse value. 3 1 Maximum positive error = - n - - 
4 4  (A-9) 

A-8 



TABLE A-3 

MAXIMUM NEGATIVE ERROR FOR 
FULL-SCALE CHANGE OF THE INTEGRAND 

Y -Counter 

Advances Transitions* 
(Iter ations ) of the klSB LSB 

of the X-Counter 
X-Counter LSB# 1 2  3 4  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

2 

1 

4 

1 

2 

1 

3 

1 

2 

1 

O* 

0 

O* 

0 

O* 

0 

O* 

0 

0" 

0 

O* 

0 

O* 

1 

0 

O* 

0 

0 

0 

O* 

0 

0 

0 

O* 

1 

1 

1 

O* 

0 1  

0 1  

0 1  

o* 1 

1 0  

1 0  

1 0  

1 o* 

1 1  

1 1  

0 1  

o* 1 

1 1  

1 1  
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TABLE A-4 

MAXIMUM POSITIVE ERROR FOR FULL-SCALE 
CHANGE OF THE INTEGRAND 

Y -Counter 

Advances 
(Iterations) 

of the 
X -Counter 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

Transitions * 
of the 

X-Counter 
LSB# 

1 

2 

1 

2 

MSB LSB 

1 2 3 4  

o* 0 0 ’ 0  

0 o* 0 0 

o* 0 0 0  

0 0 o* 0 

o* 0 0 0  

0 o* 0 0 

o* 0 

0 0 

o* 0 

0 O* 

o* 0 

0 0 

o* 0 

0 1* 

1* 0 

0 0  

0 1* 
1 pulse out 

0 1  

0 1  

0 1  

1* 0 
1 pulse out 

1 0  

0 0  
1 pulse out 

0 0  
1 pulse out 
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It can be seen that, for the usual size of a multiplier, the maximum positive 

e r r o r  is equal to 3/4 the number of bits of the multiplier. No additional error 

of this type will be encountered at the next cycle to full scale  of the independent 

variable. It must be noted that both dX and dY sequences were positive, showing 

that the sign of the output e r r o r  cannot be predicted in the general case. 

A . 2 . 2  ~e 

This example is particularly interesting since it lends itself to an easy pulse 

by pulse analysis Small o r  large e r r o r  outputs can result depending upon circuit 

changes such as rate to code pulse sequence and odd o r  even integration of 

multiplier bits. 

The law of formation of the output pulses can be easily deduced from a few 

examples with short  counter length. Figure A .  2 shows the corresponding DO 

program where the total field of the X-counter output is used as code and rate 

inputs to the pulse multiplier. 

X-COUNTER 2" INPUT 
PULSES n BITS 

Figure A .  2 .  DO Square Generator 

n When the X counter is driven monotonically to full scale (2 advance pulses), 

the following will be observed. 
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(a) For  n even and code change occurring before transition output 

The multiplier output consists of the sum of 1/2 the transitions of the 1 .s . b. 2 
X -counter outputs 

n - 91 
n-2 + 2n-3 n-(1+-) n-1 2 n 

z = 2  +.... 2 2 = 2  -2 

it corresponds to an output e r r o r  
n - -1 
2 5 = -2 (A- 10) 

(b) For n even and code change occurring after transition output 

The multiplier output consists of the sum of 1/2 the transitions of the 
n n - 1 .s .b. X-counter outputs plus all the transitions of the - m .s .b. X-counter 2 2 
outputs 

n-2 + 2n-3 n- (1 +n/2) + 2n- (1 + n/2) + 2n- (2+ n/2) z = 2  ....+ 2 

n- ( 4 2  + 1-42) n-1 n- (1 + n/2) + 2  = 2  + 2  -2" 

it corresponds to an output e r r o r  

(A-11) n/2-1 5 = + 2  -1 pulses 

(c) For n odd and code change occurring before transition output 

The multiplier output consists of 1/2 the transition of the - 1 .s .b. X n- 1 
2 

counter output plus all the transitions of the ( - n +  ) 1 .s . b. X-counter output 

(middle stage) 
2 
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it corresponds to an output e r r o r  

5 = 0 pulse (A- 12) 

(d) For n odd and code change occurring after transition output. 

n- 1 The multiplier output consists of 1/2 the transitions of the 2 1.s.b- X- 
n- 1 counter outputs plus all the transitions of the 2 m .s . b. X-counter outputs 

n+  1 n + L 2  - -3 [n-(---+l)I + 2  2 
n- 1 

2 +2 2 n -2+  2n-3 z =  2 .... + 2  

n- 1 + .... + 2 O  = 2  -1 

it corresponds to an output e r r o r  

6 = -1 pulse (A- 13) 

Important conclusions can be drawn from this example. When X and Y vary 

at the same rate and the multiplier has an even number of stages, the e r ro r  amplitude 

will reach one-half the square root of the number of input pulses and its sign will 

depend upon the rate-out to code-out sequence (i .e. ,  the actual DO circuitry and 

clocking in use). If the multiplier has an odd number of stages, the e r r o r  will 

remain smaller or  equal to one pulse. In practice, DO multiplications with X 

and Y variations at the same rate and an even number of stages in the multiplier 

will be avoided through proper scaling o r  use of an odd number of stages in the 

multiplier . 
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A.3 DIGITALOPERATIONAL QUASI-WORST-CASE ERROR FORMULAE FOR 
OPEN-LOOP INTEGRATION 

A.3.1 Method of Analysis. A comprehensive e r ro r  analysis of the DO In- 

tegrator in the general case has been initiated such that the developed e r r o r  

formulae would be usable to predict the e r r o r s  for any DO mapping configura- 

tion. The generalized point of view excludes the use of an entirely deterministic 

pulse-by-pulse analysis. The analysis would become extremely involved as soon 

as the complexity of the program increased beyond 3 or  4 integrators. Conse- 

quently, it was decided to develop worst-case e r r o r  term calculations, wherever 

applicable e 

In the case of biased source e r rors ,  such as the truncation e r ror ,  the worst 

case is defined as 

(I) The integrand function Y(t) has the worst possible shape, 

(2) The e r ro r s  have the same sign during all the computation time; 

therefore, they must be added linearly at each iteration, and 

that the sign is not known; a = k Zake  

In most cases, however, we have an "a priori" knowledge of the function 

Y(t); thus, the more Y(t) form factors are known, the more reduction can be 

taken on the worst-case e r r o r  prediction. Statistical reduction is used for 

random e r ro r s  and e r ro r  propagation formulae. For  instance, the roundoff 

e r ro r s  are random by definition, being uncorrelated from one dY increment 

to the adjacent ones. Thus, only the standard deviation of this e r ro r  term 

need be computed. How many standard deviation values approximate a "quasi- 

worst-case" e r ro r  is not known at the present time; however, one standard 

deviation will be assumed as a first approximation of the e r ror .  The more 

that is known about the function to be implemented by the D.O. Program, the 

more reduction can be taken into the e r r o r  prediction formulae 
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A.3.2 Definition of E r ro r  Source Terms. These e r r o r  terms correspond to 

the systematic e r ro r s  introduced by the mechanization of integration in a D .O . 
integrator. They are independent of the actual problem mapping interconnec - 
tions . 

Two kinds of e r r o r  terms will be considered on each connection of the map. 

First, the biased e r ro r s  which can possibly keep the same sign during the total 

computation time will be estimated for the worst-case, linearly. Second, the 

random e r ro r s ,  uncorrelated from one interval to the next, will be estimated 

by their standard deviation. 

In the formulae, the e r ro r s  will always be expressed in number of pulse 

values, as a function of input e r rors ,  scale factors, estimated dynamic ranges, 

and form factors. The sign f will always be assumed, unless specified. 

A.3.2.1 Biased Er ro r  Source Terms 

(a) Truncation Er ro r  5. This is the difference between the ideal z output 

and the actual output obtained when X(t) and Y(t) are the ideal input functions. 

(b) Field Errors  % and %. Erro r s  introduced by the use of a smaller 

number of bits in the multiplier as compared to the number of bits of the X 
and Y counters. 

(c) Integrand Biased Quantization Er ro r  g. This e r ro r  is introduced by 

the use of a Y counter initial value (or constant) differing from the problem 

value by at most one 1.s.b. (least significant bit). 

A.3.2.2 Random Er ro r  Source Terms 

Integrand Random Quantization Er ro r  E .  This e r r o r  is due to the use of 

a quantized Y(t) function instead of a smooth ideal function. 

A.3.3 In an open-loop program, 

the output pulses from any integrator do not feed back to the input of this in- 

tegrator, even through several other operations. If this is the case, there 
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exists a simple relationship between the input e r ro r s  to a given integrator, 

which are accumulated throughout the total computation time, and the output 

e r ro r s  accumulated over the same time. 

A. 3.3.1 Open-Loop Biased Er ro r s  Propagation Terms 

(a) Integrand input biased e r r o r  propagated through the integrator, a 

(b) Integration variable input biased e r r o r  propagated through the in- 

tegrator, a . 
YZ' 

xz 
A.3.3.2 Open-Loop Random Errors  Propagation Terms 

(a) Integrand input random e r r o r  propagath through the integrator, p 

(b) Integration variable input random e r ro r  propagated through the 

integrator, p . 

YZ' 

xz 

Figure A.3 summarizes the e r r o r  source terms and the open-loop-error 

propagation terms.  

A. 3.4 Analytical Expressions 

A.3.4.1 Scale Factors. A simplification in the designation of the scale fac- 

tors is apparent when a basic scale factor of one (SC1) is assigned to an ar- 

bitrary power of two. This can be chosen, for convenience, as being the ex- 

pected number of significant bits in the counters of the program. With this 

convention, a counter o r  connection marked with an SC1 designation, means 
n that 2 pulses will be required to operate a variation of one machine unit. 

Similarly, if  the scale factor is SC2a, it means that 2 n+a pulses will be re- 

quired to operate the same variation of one machine unit. 

The readout number of a counter, divided by the counter scale factor, will 

represent the real value of the counter, expressed in machine units. This de- 

finition has the advantage of using a unique setting of the scale factors, for a 

given program, independent of the possible tradeoff of accuracy vs. solution 

time, and the associated change in the register lengths. Moreover, the scale 
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d x  

t 1 
+ d z  * D O  

d y  INTEGRATOR 

d X  I N P U T  

dY INPUT 

* X  BIASED 

@x RANDOM 
INPUT ERROR 

BIASED 

Br RANDOM 
I N P U T  ERROR 

* z  BIASED 

p t  RANDOM 
d Z  OUTPUT O U T P U T  ERROR 

Figure A.3.  DO Integrator E r r o r  Terms 
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factors remain small, since SCI is the basic scale. This simplification is 

possible because it has been found that the term 2 cancels out in all the input- 

output scale-factor relationships, and in most of the e r r o r  formulae. It re- 

flects the fact that the relative accuracy of a D.O. solution is directly propor- 

tional to the register length. 

n 

Figure A. 4 illustrates the scale-factor equations. 

A.3.4.2 Form Factors. In order to limit the worst-case e r ro r  predictions, 

some reasonable assumptions have to be made on the shape of the functions Y(t) 

and eventually X(t), where t is the independent variable. Figure A.5 illus- 

trates what would be a rough sketch of Y(t) and X(t), where a guess is made of 

the number and amplitudes 03 the monotonic variations. Three types of varia- 

tions will be considered. 

(a) Monotonic variations of X (j index), 

(b) Monotonic variations of Y (i index), 

(6) The interval without change of the sign of dX and dY (i j index). 

The v.'s (variations of Y) and w.'s (variations of X) are expressed in machine 

units, so that the following values can be expressed as a first approximation. 
1 J 

One monotonic variation of Y = v. expressed in machine unit 

on the dY input, 
1 

One monotonic variation of X = w. expressed in m.u. on the 
J 

dX input, 

Total number of input pulses on dX 7 2n+px Iw. 1 
J 

Total number of input pulses on dY = 2nsQI: lvd 

Actual maximum value of the Y counter = Y , The Y counter 

when filled is equal to one and must always remain less than one 

to avoid overflow , 

, 

8 

m 
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Figure A.4.  Scale Factors 
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(f) Average value of the Y counter 

T = Y + Cv.(2q-b)  , 
0 1 

(g) Total variations of the Y counter 
DYt - - 2 n + q z ( v J  2 -n-b 

A.3.4.3 Truncation Error .  Refer to A.3.2.1.a for definition. It has been 

shown in A.2 that the maximum truncation e r ro r  is equal to the number of bits 

of the multiplier, for a monotonic variation from zero to full-scale value of the 

Y counter, assuming that the worst condition of Section A.2.2 is avoided through 

use of an odd number of stages in the multiplier. However, the sign of this 

e r r o r  term is unknown, as the same sign of X and Y variations may result in 

either a positive o r  negative e r ror ,  depending upon the actual pulse-sequence 

order. According to the scaling conventions shown on Figure A.4, 

= (m) (DY) ( 2 7  , (A-14) ‘y monotonic 

will be used for monotonic variations of the integrand. However, if there are 

sign reversals of either X o r  Y increments, o r  if  X goes beyond full-scale value, 

then, most likely, the sign of f will reverse. Finally, a statistical reduction 

of 6 will be used and rms  values of E, will replace worst-case linear accumulation. 
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To this truncation e r ro r  term should be added the initial value truncation e r ro r  

term, corresponding to the constant multiplier truncation e r ro r  term. It has 

been shown in A. 1 that this e r ro r  term is nulL (0) for full-scale variations of the 

m field of the X counter, although it has a maximum value of 

(A-16) m % = q - p - 1 )  , 

for a variation of the X counter larger than 1/4 of the m field of the X counter, 
m -n+a -p -2 that is, for w. > 2 

J 

A.3.4.4 Field Er ro r s  q and q . Refer to A.3.2.1.b for definition. r C 

(a) X counter field error:  qr. An inspection of Figure A . 4  shows that 

the higher transitions of the X counter, of an order higher than the highest 

order bit of the multiplier field, m, will not be used for the multiplier rate 

input. Consequently, the multiplier rate input scale factor was overestimated. 

Fo r  2n+p 2 w. input pulses to  the X counter, there will be 2 
J J 

order transition not used by the multiplier. The total number of transitions 

n+p-a-m I; w. higher - 

normally used by the multiplier would be 2 n+p-aX w.. The field error,  %, will 

be nonexistent when using a corrected scale factor at the multiplier rate input 

of 

3 

2P-a(l - 2-m) (A-17) 

instead of 2P’a. If the correction is not made, an output e r ro r  ‘1 will be in- 

troduced 
r 

p-tq-a-bk = (1-2-m) z vi I= w. 2 
“r J 

It is assumed in the following that the correction will be made when necessary. 

(b) Y counter field error :  qc. This e r ro r  term is introduced by the 

quantization of the integrand in steps equal to the weight of the least significant 

bit of the m field in the Y counter. This term is identical in nature to the in- 

tegrand random quantizqtion e r ro r  6 and will be evaluated in A. 3.4.6. 

(A-18) 
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A.3.4.5 Integrand Biased Quantization Er ro r  5. Refer to Aa3.2.1.(c) for def- 

inition. The initial e r r o r  in the Y counter of 2 1/2 pulse, will be accumulated 

at each increment of dX and, at the end of the computation time, the multiplier 

output e r r o r  5 will be 

n-m+p-a 5 = z w .  2 
J 

. 
A.3.4.6 Refer to A.3.2.2.(a) for 

definition. The quantization e r r o r  for one step of the least-significant bit of 

an m bit multiplier has a variance 

where e r ro r s  are supposed to be uniformly distributed within the quantization 

interval of k 1/2 l sb  of the multiplier field m. The quantization interval cor-  

responds to 2 

e r ro r  during this interval, will be, on the average 

n+b -m -c input pulses to the Y counter. The multiplier output 

where E is the output e r ro r  for a quantization interval AY and 5 is the average 

slope at the multiplier level: 

2-m 2P-az I wi J 

- 1  p -q-m -a+b -c 
I 

During the total computation time there are 

(A-19) 

(A-20) 

L 
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1 
quantization intervals experiencing uncorrelated random errors .  Therefore, the 

variance of the output e r ro r  at the end of computation will be 

And a conservative estimate of the integrand random quantization error ,  E, will 

be given by the standard deviation 

(A -2 1) 

A. 3.4.7 Open -Loop Propagated Biased Er ro r s  

(a) L a  

The case of one monotonic variation of Y will be considered at first. The 
- YZ 

output e r ro r  for the first e r r o r  pulse of a will be 
Y 

a -1 

a 
p-a-b a = -  

yz(l) Y 

th The output e r ro r  for the k e r r o r  pulse of a will be 
Y 

a - k  

Y 

p -a -b a a Y d k )  

The total output e r ro r  at the end of computation will be 

k=a v 
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, 

with a integer and a > 1, 
Y Y 

2p -a *b a =  
YZ 

This formula will now be extended to the case of driving functions with sign 

reversals. Similarly to that of truncation errors ,  in A.3.4.3, a statistical 

reduction of a 

e r ro r s  evaluated for each monotonic interval i j . 
will be estimated by composition of the r m s  values of the 

YZ 

p-a-b "Yij -' 
a = 2  h . 1  2 Yzij 1J 

and the total e r r o r  will be 

(a -1)2 
p-a-b /i 2 'ij 

4 a = 2  W.. 
YZ 1J 

1 

(A-22) 

/ k  I 

2 2 +w..  2 -2 w.. 2 a 1 (A-23) 
1J Y-. 1J 1J 

p -a -b - 1 a = 2  
YZ 

for a first approximation, a - I "ij I 
Y i j  - "y -q%i- W 

and Eq. (A-23) becomes 

1 
k k 

2 2a 2 k  a 

'Wj ij=1 J ij=1 ij=1 

p-a-b- 1 2- lW..l4 -dl ~ l W i j 1 3 + ~ l W i j l  (A-24) 
2 1J 

a = 2  
YZ 
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j In most applications it suffices to consider the first term only 

/ k  f 

(b) Xcounter input biased e r r o r  propagated through the integrator: % 

An average estimate of the output e r r o r  is given by the formula 

(A -25) 

(A-26) 

where the input e r ro r  is assumed to be linearly distributed over the dX in- 

crementation . 
A. 3.4.8 Open-Loop Propagated Random Errors .  

(a) Y-counter input random e r r o r  propagated through the integrator: pyz 

The input random e r ro r s  can be considered as uncorrelated from one 1.s.b. 

increment of the Y -register m field to the next increment. Considering that the 

DO multiplier circuit does not require temporary storage (the R-regis ter found 

in DDA integrators), and that its output is an irregular function of its input; it 

can be assumed that a random e r r o r  on its input will not be accumulated over 

the remaining computation times. Consequently, the output random e r r o r  will 

be directly related to its input e r ro r  through the average slope 5 at the multi- 

i 

plier level 

p -q -a+b -c x l w . 1  
f3 = 2  
YZ 

(A-27) 
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(b) %counter input random e r r o r  propagated through the integrator: pxz 

An average estimate of the output e r r o r  is identical to the biased e r r o r  

estimate 

Formulae (A-26) and (A-28) are quite rough estimates but sdficient for 

most practical purposes. However, when the integration variable e r r o r  con- 

tribution to the output e r r o r  is known to be a function of final values only, y 
should be replaced by Y final. This is the case for single function generation, 

such as sine-cosine, where the dX e r r o r  variations take place within constant 

integrand values for which the functioning of the integrator is truly reversible. 

(A -2 8) 
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A.4 D 0 CLOSED-LOOP PROPAGATED ERRORS 

A -4 .1  

tipliers, variable multipliers, and servos. A constant multiplier will be treated 

as an integrator and a variable multiplier as a pair of integrators. An open 

iteration path always begins with an "independent variable integrator "; that is; 

the primary input is the independent variable. If a subsequent module is also 

Definition. An iteration path links several integrators, constant mu1 - 

an  independent variable integrator, then the iteration path is considered to pass 

through the integrator from the dy input to the dz output. If the module is a 

"dependent variable integrator", that is, one for which the primary input is a 

dependent variable, then the iteration path passes through the integrator from 

the dx input to the dz output. Passage through a servo is, of course, from the 

dy to the dz output A closed iteration loop is obtained from an open iteration 

path by connecting the dz output of the last module to the dy input of the first 

module. 

Most problems will involve several closed iteration loops These 

loops will generally fuse at summing points and have common path segments. 

A.4.2 

for a given computation time T. This gain G(T,Lk) is defined to be the product 

of the following parameters: the average value Yi, during time T, of the inte- 

grand in each dependent variable integrator of the loop; the gains of the servos 

in the loop; and the gains of the independent variable integrators found along 

Closed-Loop Gain Factor. A gain factor can be assigned to each loop 

a e  loop. 

m n P 

(A -29) 

are defined in the following subsections. T, Sj and T, Ik 
The gains g 
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A. 4 3 

erated to balance one input pulse 

Servo Gain. The gain of a servo is the number of output pulses gen- 

where the ys j, i a r e  the averages, occuring during the computation time 

T, of the values contained in the Y-counters of the integrators and constant 

multipliexs found along the servo feedback path. 

(A-30) 

A.4.4 Independent Variable Integrator Gain. The gain of an independent 

variable integrator is the ratio of the number of output pulses to the number of 

Y-counter input pulses during the computation time T, assuming that the initial 

value in the Y-counter is equal to zero. This gain will depend upon the time 

of occurrence of the Y -counter input pulses. Two situations will be considered 

In the first situation, all the input pulses occur within an initial time interval which 

is short with respect to the cornputation time T. The time of computation T 

required for one input pulse to generate one output pulse is 

1 mu ind. var (time) 
- an -m-b -a +b -c 2 

T =  

If a(T,INT) and b(T,INT) a re ,  respectivelyr the numbers of input and output 

pulses, then the gain of the integrator is 

T b 

a 7 
- - (T9INT) = - 

(T, gT, I 

In the second situation, the input pulses are distributed throughout the time T. 

(A -3 1) 

(41-32) 

An approximation for the gain is 
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(A -33) 

If little is known about the pulse rate flow in the problem, formula (A-32) will 

be used for the highest derivative integrator, and formula (A-33) will be used 

for the lower-order derivative integrators. 

A . 4 . 5  

two or  more closed iteration loops merge, a s  the sum of the itekation loop gains. 

Total Gain. A total gain can be defined at any Y-counter input, where 

Q 
P 

G(T, Total, LOC.) = 2 Lk) k= 1 
(A -34) 

It has been observed in several programs, where a large number of closed 

loops were involved, that the total gain is often negative. Basic closed-loop 

propagation e r r o r  formulae (A -32) and (A -33) a r e  applicable for positive as  

well as for negative total gains, when using appropriate intepretation and method 

of application. 

A.4.6 Erro r  Propagation in The General Case 

A.4.6.1 Sources of Er ror .  The e r r o r  formulae developed in Section A-3 pro- 

vide over -estimates of the e r ro r s  generated in an open-loop integration scheme 

o r  in a closed-loop of iteration, when the time of computation T is too short for 

e r ro r  pulses to propagate completely around the loop. In the more general case , 
the program contains several interacting closed iteration paths, and the time of 

computation is long enough for generation of significant truncation and biased 

quantization e r ro r s  that start the e r r o r  feedback process. An e r r o r  value 

smaller than one pulse represents a shift of the time a t  which a variable is incre- 

mented but does not introduce an e r r o r  in the number of pulses representing the 

quantized variable. The e r r o r  propagation will be analyzed a s  a pulse flow 

superimposed on the normal signal pulse flow. 
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In a first attempt to determine the e r ro r s  at the end of computation, 

in a program containing closed iteration paths, the following method was used. 

The e r r o r  curve was considered as a slowly varying function of time; e.g., 

non-oscillating (this assumption was later found to be erroneous). An estimate 

of the e r r o r  at the end of computation was then made at a given point of the loop, 

usually at the input to the highest derivative integrators. Then the e r ro r s  were 

propagated throughout the map, using the a and the p formulae. Finally, a 

match was sought between the e r r o r  initially assumed at the starting point of 

the loop with the e r ro r  returned to this point by propagation. Successive cor- 

rections of the initial e r r o r  assumption were  applied in an attempt to achieve 

the match. The method has serious drawbacks. In the first place, the initial 

assumption is quite arbitrary, unless the order of magnitude of the e r ro r  is 

known through some independent solution. In the second place, a match can- 

not usually be found since the propagated e r ro r s  are overestimated. Conse- 

quently, a reduction factor of the propagated e r r o r  should be used, taking into 

account over-estimates and feedback in the closed loop. A workable rule to 

take these factors into account has not been found despite numerous painstaking 

trials, and such a method of e r ro r  matching has been abandoned. The following 

more realistic method, based on a closer inspection of the actual pulse flow 

in the program, was  finally adopted. 

In the first step an e r ro r  propagation map is set up. This map makes 

it easy to recognize the closed iteration paths and includes indications of the 

Yi's and g's, for the time of computation T. Such an e r r o r  propagation map 

may o r  may not be decomposed into isolated closed loops, depending upon the 

programmer needs for visual aids. Let us  assume the loops have been isolated 

and numbered, loop 1,2 . . , 

.. 
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Figure A . 6 .  Coupled Closed Iteration Loops 

and let us consider the example illustrated in the first two interconnected loops 

of Figure A.6.  In each loop, the e r r o r s  will be first generated, then propagated, 

then fed back to the point of generation. Two kinds of e r r o r  propagation will 

take place. In primary e r r o r  propagation, the e r r o r  is propagated within a 

single loop independently of other loops. In secondary error propagation, the 

e r ro r s  transfer from one loop to the dy inputs of another loop, as shown in 

Figure A .6.  A rigorous quantitative determination of the e r r o r  growth process 

will require the following procedure. 

A. 4.7 Procedure FQT Closed -Loop Er ro r  Evaluation 

A 4.7.1 Establish the e r r o r  propagation map and isolate the various closed 

loops of iteration. 

A .4.7.2 Slice the total computation time in intervals Ti, T2 . . . Tn in such a 

way that within each interval no integrand o r  gain varies significantly (not more 

than 50 70 change in value from one interval to the next). Indicate the T s  and 

g's on the e r r o r  propagation map for the successive computation time intervals. 

c 
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A. 4 .7 .3  Compute the source e r ro r s  for the interval of computation T1 for 

all points of the map, using open loop e r r o r  formulae of Section A .  1.  How - 
ever, very low gain loops may be omitted since they will not contribute sign- 

ificantly to the final e r ror .  In many instances field e r r o r s  and quantization 

e r r o r s  may also be neglected when compared to biased quantization e r ro r s  

and truncation e r rors .  

A .4.7.4 Then evaluate the primary e r r o r  propagation during computation 

interval TI for  each loop, using the formulae A-26, A-28 and A-31, A-32 o r  

A-33. Each e r r o r  term should be propagated only once around the loop. If 

at any input to an independent variable integration, the sum of the propagated 

e r ro r s  is at least one pulse, then determine both the amplitude, a ,  o r  min- 

imum number of pulses that this input e r r o r  must attain and the time t, req- 

uired in order for this e r r o r  to be compensated by the same number of e r ro r  

pulses fed back with opposite sign (assuming negative loop gain). The amp- 

litude,a, will be one pulse unless the use of upscaling servos o r  other devices 

implies that the minimum must be more than one pulse. The time tr will  be 

called the e r r o r  relaxation time since it corresponds to an oscillation of an 

e r r o r  of amplitude a at this point of the loop and of repetition rate tr . How- 

ever, when other causes of e r r o r  are taken into consideration, this oscillation 

may not be observable, although e r r o r  growth is still limited to the maximum 

that can be reached during the time tr. In particular,tr varies from one loop 

to another and will change at the next computation interval,T2. 

In the case of positive feedback, the same time,tr,will be computed, 

since it corresponds to a minimum time of e r r o r  incrementation through feed- 

back. New e r r o r  increments will be computed for each tr time span until 

the end of the computation interval TI in order to evaluate the e r r o r  build up. 

A .4.7.5 Evaluate, at the end of Ti  .the e r ro r s  introduced in a given loop 

from the other loops through the dy inputs of the given loop, taking into account 

the primary propagated e r r o r  reduction due to e r r o r  relaxation. When there 
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' is relaxation, the sign of these e r ro r s  is unknown, and the sign should be chosen 

for the worst case. 
1 

A.4.7.6 To these secondary propagated e r rors ,  add the ordinary sources 

of e r r o r  generated during T2 such as delays, truncation, etc . and compute the 

primary propagated e r ro r s  in a way similar to that just described for TI in 

A .4.7 -4 .  Then evaluate the secondary propagated e r r o r s  at the end of T2 in 

order to start the evaluation during Tg and so forth until Tn in reached. A 
conservative estimate of the e r ro r s  will then require summation of the e r r o r  

values found at each computation interval Ti, T2.. .Tn. Very often, e r r o r  

relaxation will be found and the sign of the e r ro r s  will not be hown.  

However, for medium and large size problems, this e r ro r -  

prediction method will not be amenable to hand calculations because of the 

large number of operations involved. Each e r r o r  source term has to be pro- 

pagated around a loop for each computation interval. During the first interval, 

TI, only a few significant e r r o r  sources may be found; however, for the next 

computation interval, secondary propagated e r ro r s  are considered and as 

many e r r o r  sources will be found as there are integrators in the problem. 

A general-purpose computer program could be set up to solve this e r ro r  pre- 

diction problem, which would require a special coding of the map and numerous 

but simple algebraic equation-solving routines, However, it would be an im- 

portant and complex task well beyond the scope of this study. 

Fortunately, it has been found that in cases where the e r ro r s  grow 

to a level of several pulses during the computation time, the secondary propaga- 

ted e r ro r s  can be neglected. The condition of e r r o r  relaxation for negative 

feedback, o r  e r r o r  buildup for positive feedback, will  be found in the highest- 

gain closed loops which will be treated as e r r o r  driving loops. A simplified 

procedure amenable to simple hand calculation can be set on this basis. How - 
ever, these methods are not easily applicable to the free-running sine-cosine 

generator where the e r r o r  sources are significantly larger than the propagated 

e r r o r  buildup and a specialized e r ro r  propagation analytical model was derived 

for this case, as discussed in Section 2.0. 

A-34  



APPENDIX B 

ERROR CURVES 

MEDOC PROGRAM RUNS 

This section is concerned with the results of Task 11, MEDOC Simulation. 

Tables B. 1 through B. 8 illustrate the maximum pulse e r ro r s  for every program 

run. Also, included are e r ro r  curves that are pertinent to the discussions in 

Sections 2, 3 and 5 .  

Those programs in which e r r o r  curves are included in this report are 

identified in the tables by an index mark A . 
The Reader can easily calculate the percent e r r o r  of full scale: 

< 

'% E = Pulse E r r o r  (3.05 X . (B- 1) 

B . l'r PROGRAM SET 1.000 - ONE -AXIS INVESTIGATION 

B. 1.1 Initial Conditions 

0.5555 2980 

B . 1 .2 Program Runs 

A. Rotation 

1.101 
Direction 
CW+) 

- .  

B- 1 



B.  Limit Cycle 
Radian 

Amplitude (2) 

1.103 0.0000305 

1.104 0.000244 

1.105 0.001953 

1.106 0.0 15625 

1.107, 1.202 

1.108, 1.203 

1.109, 1.201 

0.125 

1 .ooo 
2.000 

B. 1.3 Table of Results for Maximum Pulse Errors 

A. Rotation 

Table B .  1 

Program 
Run 

1.101 
A 

Maximum 
Pulse Errors - 

Rev. 

1 

2 

3 

4 

5 
10 

20 - 

B-2  



B .  Limit Cycle 

Table B.2 

Maximum 
Pulse Errors Program 

Run 

1.104 

1 .lo6 

1.202 

1.203 

1 201 
A 

Maximum 

B-3 



P R O G R A M  

1'' THROUGH 5'" REVOLUTION 

RAAD/ANS 
0 5 10 I S  20 25 
t I I I I I 



GRAM R U N  1.101 

IOfH R E V O L U T I O N  

30 35 
I I 

56 18 60 62 64 
1 I I I J 

20fn REVOLUTION 

Ire 122 I26 
1 I I 

Figure B. 1 
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t , I I I 
I I I I I I I I 1 

I 

0 +2 - 2  +2 0 -2 0 0 

RADfAMS 

3P 

20 

a x I t  e w 
w m 
A 4  
3 n 

-H 

- PC 

-3( 
1ST CYCLE 2ND CYCLE 

4.. 



PROGRAM RUN 1.109 

I I 
I I I 

0 0 0 +2 - 2  i -2  0 - e  
I 
I I I I I 

I I I -1 I 
____f 

PROGRAM RUN 1.201 

IOTH CYCLE 20TH CYCLE 

Figure B. 2 

B-5 
c/ 



B.2 PROGRAM SET 2.000 - TWO-AXIS INVESTIGATION 
I 

B .2.1 Initial Conditions 

B.2.2 Program Runs 

A. Rotation 

Direction 

2.101 CW(+) 

2.102 CCW( -) 

B. Limit Cycle 

Radian 
Amplitude (k) 

2.104 1 

2.105 1/8 

2.106 1/ 2 

1 

2.107 

2.108 

2.109 

Relative Angular Rates 

Ae2 =AB1 

AQ3 = 0 

A@, = 1/2AB2 

= 0 

Relative Angular Rates 

Ae2  = Ae,  

Ae3 = 0 

h e l  = l/2Ae2 

AQ3 = 0 
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i 

Program 
Run 

L 

2,101 

A 

2.102 

A 

B. 2.3 Table of Results for Maximum Pulse Errors  

A. Rotation 

Table B .3  

Maximum 
Pulse Er i  

1 

11 

13 

18 

18 

4 

7 

7 

29 

a 
- - 

- 

- 

2 

9 

10 

19 

19 

5 

7 

12 

31 

a 
- - 

- 

cs 

3 a 

8 

14 

18 

27 

6 

8 

8 

43 

Program 
Run 

2.103 

Puls 

1 

4 
12 

55 

63 

a 
- - 

- 

Err (  

2 a 

6 

6 

42 

60 

- - 

- 

- 

B-7 



B. Limit Cycle 

1 a 

2 

2 

7 

0 

1 

1 

1 

1 

2 

2 

7 

0 

Table B.4 

2 a 

3 

3 

8 

25 

1 

1 

2 

5 

2 

1 

7 

9 

Program 
Run 

2.104 

2.105 

2.106 

1 a 

3 

3 

11 

14 

1 

2 

2 

7 

2 

3 

6 

8 

Maximum 
Pulse Errors 

2 a 

2 

2 

5 

6 

2 

2 

3 

10 

3 

3 

3 

6 

3 a 

3 

6 

8 

35 

3 

3 

12 

16 

Program 
Run 

2.109 

2.107 

2.108 

Maximum 
Pulse Eri rs 

3 a 

2 

2 

9 

10 

2 

1 

2 

3 

2 

4 

4 

4 

Cycles 

1 

2 

10 

20 

1 

2 

10 

20 

1 

2 

10 

20 

B -8 



P R O G R A M  1 

30 

8 2 0  

kJ IO 

2 
2 O  

Q 
Q 

4 

-10 

-20 

-3 0 

IST AND 2"' REVOLUTION 

R A D I A N S  
0 2 4 6 8 IO 12 13 

I I 
I 

I 
1 

I 
I 

I 
I 

I 
I 

I 
I 1 

0 2 * 6 8 IO 12 13 

56 

+- 
5 8  

R A D I A N S  

P R O G R A M  F 

Q l  - 
0 2  - 
03 - 

IS' AND 2ND REVOLUTION 



RUN 2.101 

1 IOTH REVOLUTION 

20T" REVOLUTION 

5 8  60 62 63 119 121 123 I25 I26 
I 
I 

I 
I 

I 
I I f I i I 

I 
I 
1 

I 

58 60 6 2  63 119 I21 123 125 128 

R U N  2.102 

IOTH REVOLUTION 20TH REVOLUTION 

Figure B . 3  
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i B -3 PROGRAM SET 3.000 - THREE-AXIS INVESTIGATION 

Bo 3.1 Initial Conditions 

y =  q J = $ = . 7 5  

y =  +=j3=.50 

B.3.2 Program Runs 

A. Rotation 

3.101, 3.201 

3.102 

3.108, 3.208 

3.109 

B. Limit Cycle 

3.103, 3.202 

3.104 

3.105 

3.106 

3.107, 3.203 

3.110, 3.210 

3.111 

3.112 

3.113 

3.114, 3.211 

Direction 

CW(+) 

CCW( -) 

CW(+) 

CCW( -) 

Radian 
Amplitude (-t) 

1 

1/ 8 

1/64 

I/ 16 

1/32 

1 

1/ 8 

1/64 

I/ 16 

1/ 32 

B- 10 

i 
~ 

Relative Angular Rates 

Ae3 = Ae2 = A e l  

A@, = Reference 

A@, = 1/2Ae2 ; A e 3  = 1/4c\€l2 

Relative Anmtlar Rates 

AQ3 = A0,=Ae1 

he2  = Reference 

AB1 = l/2AQ2 

Ae3  = 1/4Ae2 



B.3.3 Table of Results for Maximum Pulse Er rors  

19 

36 

93 

A. Rotation 

22 17 

34 34 

91 92 

Table B .5 

10 

36 

50 

6 

12 

59 

10s 

6 

9 

78 

186 

Program 
Run 

3.101 

A 

3.102 

A 

3.108 

14 11 

37 39 

49 52 

3 7 

7 12 

43 52 

94 100 

6 8 

8 10 

66 76 

87 211 

Maximum 
Pulse Er ro r s  

a a 3 a 2 1 

9 

10 

31 

40 

8 

14 

40 

61 

13 I 14 1 15 

11 10 

14 13 

31 44 

37 38 

7 9 

17 12 

37 44 

53 61 

Program 
Run 

3.201 * 

3.109 

3.208 

A 

Maximum 
Pulse Er ro r s  

a a 3 a 2 1 Rev. 

1 

2 

10 

20 

1 

2 

10 

20 

1 

2 

10 

20 
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B. Limit Cycle . 

Program 
Run 

3.103 

A 

3.104 

A 

3.105 

3.106 

A 

3.107 

A 

3.110 

3.114 

Pulse Erro 
a 2 a 1 

4 4 
7 16 

20 16 
23 27 

1 1 
1 1 
2 6 
2 10 

0 1 
0 1 
0 1 
0 1 

1 1 
2 1 
3 1 
4 4 

1 1 
1 1 
2 3 
5 3 

4 3 
2 3 

13 5 
20 13 

1 1 
1 1 
1 2 
0 2 

Table B .6 

Maximum 
Pulse Errors 

a 2 1 

6 5 7 
6 6 4 

2 1  15 I 14 
8 10 9 

1 2 0 
2 2 1 
1 1 3 
1 2 6 

0 1 0 
0 1 0 
2 1 1 
2 1 0 

0 1 3 
1 1 2 
0 3 2 
1 5 4 

1 1 1 
1 1 1 
1 5 1 
2 5 3 

2 3 3 
5 6 6 

3 a a 

0 

Cycles 

1 
2 

10 
20 

1 
2 

10 
20 

1 
2 

10 
20 

1 
2 

10 
20 

1 
2 

10 
20 

1 
2 

10 
20 

1 
2 

10 
20 

B- 12 



IS' AND 2" REVOLUTION 
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56 
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1 R U N  3.101 
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Figure B .4 
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Is? AND end REVOLUTION 
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1 
I 
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I 
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39 

PROGRAM RI 
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-40 -IJ 
-10 

PROGRAM R U  



IOth REVOLUTION 20th REVOLUTION 

1 
I 

UN 3.102 
I 
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I 
I 1 
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I 
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IOth REVOLUTION 

3.108 

Figure B.5 
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2 n d  CYCLE 03 - 1st CYCLE 10 

0 

-10 , I 1 t i t I I 8 
0 +V32 0 -l/32 0 0 +l/32 0 -v32 

PRC 

IO 

0 

I I i I I I I 
0 + 1/18 0 -1/16 0 0 +VI6 0 -#/&6 

0 + i/8 0 -I/B 0 0 0 -118 
w 
tn 
-1 
3 P R  
a 

0 

-10 

0 

-10 

- O l  

PI 

-- I 
0 

I 

+I 

R A D I A N S  

0 
I 

-I 
8 

0 0 
I 

+ I  
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0 -I 



10th CYCLE 20th CYCLE 

P - ,. sl - 0 - 
8-X-g - - I I I 

0 0 0 
I i I I I I 1 

1/32 + V32 - V 3 2  0 + 1/32 0 - 1/32 0 0 

' R O O R A M  R U N  3.107 

- I I 1 I I I i 
8/16 + 1/16 4/16 + 1/16 0 -VI6 0 0 0 0 

I 
0 

I 
0 

I 

P R O G R A M  RUN 3.106 

- f 3 t I --I I I I 
118 0 0 t 118 0 - I / @  0 0 + I/a 0 - v a  0 

P R O G R A M  RUN 3.104 

OGRAM RUN 3.103 - I I I I 1 
"I 0 0 +I 0 - I  0 

r 1 I I 

0 0 
i 

+I - 1  0 

Figure B .  7 
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l01  

1ST CYCLE 2N0 CYCLE 
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I 
B . 4  PROGRAM SET 4.000 - VELOCITY INVESTIGATION 

B .4 .1  Initial Conditions 

4.300 
(Same as 1.200) .8314 9663 .5555 2980 0 

B .4 .2  Program Runs 

A. Ascent Program 

A 8. (Radians) 
1 

4.101 AQ2CW(+), 0-1 .5  

AV-_B Relative Rate 

O C A 8  .5  A 82 = - .  
16 ’ 2 -  ’ A V B  

X 

A V  (A.T.) = 102.4 ft/sec. 
X 

, < 1.0 - A 82 -- 
4 A V B  - 

B 

X 

A V  (A.T.) = 512 ft/sec. 
X 

A V  = AB2 ; 1.0  CAB2 - < 1.5 
X 

B A V  (A.T.) = 2150.4 ft/sec. 
c X 

Same as 4.101 

A f3 Limit cycle 2 1/64 { A € 1 3 = 8  , * 0 1.5 
A % 

4.102 Ae2CW(+), 0-1 .5  

(A.T.) = Accumlative TOTAL increments of velocity at the end 
of each interval. 
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4.103 Same as 4.102, except limit cycle 

A 0 instead of A €I3. 

4.104 Same as 4.102, except limit cycle 

AB1 and A 0  in phase. 3 

Limit cycle A V  

for 20 cycles. 

= 3276.8 f t  Jsec . 
X 

4.201 

4.301 Same as 4.201. 

B .4 .3  Table of Results for Maximum Pulse Errors  

A. Ascent Program 

Table B .7 

Program 
Run 

VI 
X 

- 

4.101 

2 

2 

3 

4.102 

0 

1 

2 

= 

Maximum Pulse Errors  

4.103 

2 

2 

2 

= 
4.104 

0 

2 

1 

= 
A V - ~  Slope 

B Ae2/16 ; A V  = 102.4 ft./sec. 
X 

A€12/4 ; A V  = 409.6 ft./sec. 
X 

; A V  * = 1638.4 ft./sec. * 02 X 

B A V  (A.T. )  = 2150.4 ft./sec. 
X 
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B. Limit Cycle 

1 

1 

Table B .8 

1 10 

1 20 

B .S ANALYTIC EXPRESSIONS PROGRAMMED FOR THE IBM 1401 

W e  wish to obtain solutions to the three simultaneous differential equations, 

= a  de -a d0 &l 2 3 3 2  

= a  d0 -a de (8-2) da2 3 1 1 3 

= a  dB -a dB 1 2 2 1 

which are valid to six significant figures. The three dependent variables are 

a and i f  we introduce the independent variable t, the above equations al’ a2’ 3 
become 

i = a 6  - a 6  

i = a 8  -a 6 
1 2 3  3 2  

2 3 1  1 3  

i = a 0  - a 8  3 1 2  2 1  

In general these equations can be integrated only by numerical methods but for 

the special case when the angles 0. are changing at a constant rate 
1 

03-3) 

9. = ki . 
1 03-4) 
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, 

I 

Equations (B-3) can be conveniently written in the vector form 

The fact that % is perpendicular to B implies that B does not change in magnitude, 

and the fact that it is also perpendicular to the fixed vector E means that 3 gen- 

erates a cone about an axis defined by %. From the law of cosines for oblique 

spherical triangles and Figure B.9, we obtain 

a = cos b cos c-sin b sin c cos a 1 03-61 1 

Figure B .9 Direction-Cosine Vector Diagram 

*. t - .  

= li;It+cl * 
kl 1 

Ikl 01 ’ where cos b = Y , cos c = (a k +a k + a  k ) - 

alO’ a20’ a30’ aO1 

10 1 20 2 30 3 ’.al 

are the given initial values for t = 0 .  
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Similarly, formulas are readily obtained for a and a * 2 3' 

a. = cos b cos c + sin b. sin c cos (at + a .) (i = 1,2,3) 
1 1 01 

= C. +D. cos (ut +a ) 
1 1  oi 

where 
ki 

El 
COS bi = - 

For the cases considered in this report, after the constants Ci, Di, and aoi 

were evaluated, the resulting formulas for a.  were checked by substituting 

numerically into (B-3) o r  solutions were additionally obtained (at least over a 

limited range) by a numerical method. This later check was made primarily 

to study the accuracy of the numerical method. 

1 

The numerical solution of (B-3) that was selected and programmed is known 

as Hamming's method. A detailed discussion of this method can be found in 

"Ralston and Wolf, Mathematical Methods for Digital Computers , John Wiley & 

Sons, 1960. " It was found that by using nine-significant-digit floating point 

accuracy and an integration interval, A t ,  of about 0 -03 or  0.04 e r ro r s  could be 

held below one o r  two in the 6th decimal point in the range O <  - I tl - 20 (ZIT), for 

those cases that could be checked analytically. The e r ro r s  oscillate and are 

usually considerably less than this. 

An additional task was the evaluation of the expression 

V i  = 1 aldVX B 

where a is as defined in (B-7) and 1 
B vx = p(t) * t 
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where p (t) is a piecewise constant changing only at given values of t. Substitut- 

ing (B-7) and (B-9) into (B-8) we obtain (over an interval of constant p) 

tl 
V i  = p [ C1 + D1 COS (ut + aoi)]dt 

D l  
= p C  t +p-  [s in(wt  + a  .) - s i n a  01 . f  , 11  0 1 01 

Since for the cases considered p, and k. were all piecewise constants this 

formula was used repeatedly, it being necessary of course to re-evaluate the 
1 

D1, w, a 1’ oi at the start of each interval. constants C 

The evaluation of the analytic expressions was programmed in the IBM 1401 

Fortran using 9 -significant digit accuracy. 
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APPENDIX C 

AIRBORNE COMPUTER ANALYSIS 

C . 1 Description of T- 1 Computer 

Figure C .1 shows the basic arrangement and signal flow for the forward- 

backward counter. For the reference application at 2"13 radian, the counter 

must be 16 bits long to cover smoothing and polarity requirements. Each such 

counter is designed as two identical stacks, ganged together to utilize a uniform 

building-block size appropriate for mechanical design, reliability and maintain- 

ability purposes. 

The sub-multiplier shown on Figure C .2 performs two-thirds of the pulse 

multiplier function, -gating the magnitude part  of the code input with the input 

pulse rate o r  increment. The partial product is then converted to a full product 

in the product section of the product adder shown in Figure C. 3 .  Here  the "two's" 

complement of the partial product is obtained for negative codes, and product 

polarity is determined. The same sub-assembly contains an uncommitted pulse 

adder with two inputs and two stages of smoothing. 

Figure C. 4 shows the arrangement for obtaining synchronously timed pulses 

in accordance with the external input signals. This is followed by the upscaler 

of Figure C .5, which quadruples the pulse quantity in order to compensate for 

smoothing in the counters. The clock slot generator for the computer is shown 

in Figure C .6 .  Discrete circuits are used for the astable multivibrator and the 

output pulse amplifiers, and integrated circuits for the remainder. 

Computer composition is tabulated by stack in Table C-1 . Inspection of 

Figure 3.2 shows that only 15 counters , 27 multipliers and 15 two-input adders 

are necessary. However, three additional counters are needed due to a maximum 

rate fanout capability of three, which is inadequate for the angle counters. The 

uniform building block approach also provides 12 unused adders , which are in- 

convenient to remove; their effect on component count and power drain is only 

five percent. 
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Figure C. 1 Block Diagram'of Counter FBC-8D for T- 1 Computer 
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Figure C. 2 Block Diagram of Sub-Multiplier MS- 15 for T- 1 Computer 
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Table C- 1. Composition of Computer T- 1 by Stack 

36 FBC-8D at 17 Components 43 MW : 612 Components 1.55W 

27 MS-15 16 42 432 1.13 

27 MP/A 14 

2 SI-3 18 

6 Upscaler 14 

2 Clock 

100 Sub-assemblies 

46 378 1.24 

60 36 0.12 

40 84 0.24 

54 0.31 

1596 Components 4.59W 
- - 

C .2 Description of T-2 Computer 

The T-2 Computer differs from the T-1 mainly in  the replacement of the 

ripple-carry, forward-backward counter with the fast-carry design of Figure 

C.7. The required 18-bit word length is achieved by stacking three unit sub- 

assemblies . The remaining differences are the increased multiplier word length, 

and added gating for the synchronizers in the product multiplier in  order to speed 

up synchronizer recovery time. Computer composition is summarized in Table 

c-2. 

Table C-2.  Composition of Computer T-2 by Stack 

18 FBC-6F at 18 Components, 67 MW : 324 Components 1.21W 

36 FBC-6R 18 65 648 2.34 

27 MS-17 18 47 486 1.27 

27 MP/A 16 

2 SI-3 18 

6 Upscaler 14 

2 Clock 

54 432 

60 36 

40 84 

54 

1.46 

0.12 

0.24 

0.31 

118 Sub-assemblies 
- - 

2064 Components 6.95W 
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C .3 Description of F - 1 Computer 

The design for a forward-backward counter using Fairchild Milliwatt Micro - 
logic is shown in Figure C. 8. The first stage provides several outputs delivered 

to all of the succeeding stages in parallel. Each counter is implemented by cascad- 

ing small uniform-size, five-bit sub-assemblies . 
The sub-multiplier shown on Figure C.9 performs the same function as 

described for the T- 1 Computer. The same applies to the product adder shown 

in Figure C . lo .  

The synchronizer and upscaler a r e  covered in Figures C.4 and C.5.  The 

clock slot generator is organized similarly to that shown in Figure C.6, except 

that cascaded integrated circuits a r e  used for the output drivers and for the 

astable multivibrator . 
Table C-3 summarizes computer composition by stack. 

Table C-3. Composition of Computer F-1 by Stack 

15 FBC-5F a t  32 Components, 0.23 W : 480 Components 

45 FBC-5R 30 0.21 1350 

27 MS-19 27 0.26 729 

27 MP/A 30 0.17 8 10 

2 SI-3 30 0.23 60 

6 Upscaler 31 0.23 186 

1 Clock 20 0.18 20 

123 Sub-as s emblies 
- 

3635 Components 

3.45w 

9.45 

7.02 

4.59 

0.46 

1.38 

0.18 

26.53W 

C .4 Description of F -2 Computer 

The F -2 Computer is a standard Micrologic extension of the F - 1 design, as 

may be seen from Figures C .11, C .12 and C .13. Computer composition by stack 

is summarized in Table C-4. 
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Table C-4. Composition of Computer F -2 by Stack 

15 FBC-4F at 26 Components, 0.74W : 390 Components 11.1 W 

45 FBC-SR 30 0.80 1350 , 36.0' 

8 FBC-2D 24 0.64 19 2 5 .1  

27 MS-20 27 1.15 7 29 31.1 

27 MP/A 30 

2 SI-3 30 

6 Upscaler 31 

2 Clock 

0.74 8 10 

0.90 60 

1.10 186 

33 

20.0 

1.8 

6.6 

0 .6  

132 Sub -assemblies 3750 Components 112.3 W 

C.5 Power Supply 

The power supply unit is designed to produce output voltages of +6V DC 

and +3V DC at four different power levels from an incoming 28V DC supply. It 

has been assumed that the incoming supply will vary between the limits of 25V 

and 31V, and that large voltage transients will occasionally be present. A 

summary of the power supply unit characteristics is presented in Table C-5. 

Due to the method of regulation, the input power and hence the efficiency, will 

be essentially independent on the variation of the incoming 28V supply. 
. -  - 

A block diagram of the unit is presented in Figure C + 14. The output voltages 

of +6V DC and +3V DC are obtained by rectifying the square wave produced by a 

DC-AC converter. A small choke input filter will follow the rectifiers to smooth 

out the converter switching transients, and provide output voltage with low ripple, 

to less than 1% of the voltage. The converter uses a separate oscillator and 

driver to avoid the transformer losses of the power oscillator. The operating 

frequency will be 25 Kc.  

The DC supply for  the converter is obtained by regulating the incoming 

28V DC. The regulator is of the switching type in the form of a" monostable 
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multivibrator with a controlled off-period. This is regulated by comparing the 

+3V DC output voltage against a +3V reference, and using the difference voltage 

to adjust the off-period. This will, in turn, alter the DC supply voltage to the 

converter in such a direction that the +3V is maintained at its correct value. In 

this way, a low-voltage, high-current supply can be obtained, with good regula- 

tion against line and load changes, by placing the regulator on the higher voltage 

side of the supply, where a greater efficiency can be obtained. 

Since the regulation is achieved by duty-cycle control, the power drawn 

from the incoming 28VDC supply will be independent of the supply voltage, and 

will vary only with the output power. 

Table C-5. Power Supply Characteristics 

unit - T - 2  - T - 1  - F- 1 - 
Power Output 5w 8w 30w 

Power Input 7.sw 11.5w 43.5w 

Efficiency 6670 

Components 46 

6870 

46 

69% 

46 

F-2 

120w 

166w 

7 1% 

46 

- C .6 Computer Packaging - -  

C .6.1 Ground Rules 

A series of ground rules had to be established in order to prepare estimates 

of weight and volume for a flyable computer. These rules define the mission pro- 

file, trade-off requirements and packaging philosophy. The rules listed below 

are not necessarily in specific order,  since any system design is a compromise 

of all known parameters. 

(1) Environment - space 

(2) Cooling - by conduction; radiation to be minimized 

(3) Reliability - maximum 
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(4) Weight - minimum 

(5 )  Size - minimum 

(6)  Form Factor - unknown 

(7) Maintainability - required 

(8) Materials - only proven materials to be used 

(9) Fabrication Techniques - known proven techniques to be used 

(10) cos t  

C .6.2 Computer Package 

The unit shown in Figure C. 15 may be considered typical for all four com- 

puters. Estimates of unit size, weight and volume a r e  given in Table C-6. The 

computers a r e  composed of welded encapsulated modules with a welded-wire 

interconnection matrix. It is a disciplined geometry sys tem, designed to obtain 

minimum size and weight with maximum reliability. Cooling is provided by 

aluminum conduction fins between the modules, which connect to a base plate. 

The base plate provides interface to the environmental control system. The 

modules and cooling fins a r e  clamped together via a thru-bolt. This bolt, under 

tension, provides the necessary contact pressures for heat transfer from the 

modules to the fins The variation of bolt tension due to differential expansion 

. .  

of the bolt, the modules, and the creep properties of the encapsulant a r e  taken - 
into account when determining the required bolt tension. 

The complete assembly is enclosed in a magnesium cover, which is baffled 

and gasketed against RF interference. The cover is treated with a low-emittance 

finish to minimize radiation from the unit. Shielding between the modules is 

provided by the aluminum cooling fins. Additional shielding of the modules can 

be achieved by plating the sub-assemblies with a thin layer of copper; this 

would also improve the joint conductance at the module/fin interface. 

C .6.3 Modular Packaging 

To achieve the high reliability required, the use of connectors for module 

interconnection has been avoided. Rather, the multilayer welded-wire matrix, 
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Table (3-6. Estimates of Unit Size, Weight and Volume 

Width (in.) 

Length (in. ) 

Height (in .) 

Volume (cu-in .) 

Weight (lbs .) 

Computer 

Volume (cu-in-.) 

. .  Weight (lbs .) 

Power Supply 

Volume (cu-in.) 

Weight (lbs .) 

T- 1 

10 .o 
- 

5.05 

3.7 

186.6 

9 . 6  

132.2 

6 .92  

54.4 

2.69 

T-2 

10.0 

6 .3  

3.7 

233.1 

12.3 

- 

174.3 

8.64 

58.8 

3.66 

F-1 

12.5 

12.5 

- 

3.75 

56.8 

29.6 

510.0 

25.2 

58.4 

4 . 4  

F -2 

13.73 

9 .4  

6.00 

- 

774.4 

39.9 

638.9 

30.7 

135.5 

9 . 2  

split-pin, wire-wrapped terminal technique has been selected, which offers a 

permanent connection reliability in a separable connection. As the wire is 

wrapped, tension in the wire produces high pressures a t  the wire and terminal 

junction. The joint produced is gas tight, is capable of withstanding high 

acceleration and shock loadings, and its resistance is below that of conventional 

separable connectors. T h e  basic terminal material will be hard beryllium copper, 

~- 

and the wrapping wire, soft copper-jacketed steel. The terminal will permit more 

than 50 re-wraps before excessive de-cornering of the terminal precludes further 

use. These joints a r e  easily made with a hand or  power tool. A simple unwsapp- 

ing tool o r  pliers can be used for disconnection. 

An analysis was made of the preliminary block diagrams and the functional 

blocks which enabled the system to be sub-divided into modules. The modules 

were planned according to circuit stability, the number of external connections 

required, module functionality and dissipation. The module size (see Table C-7) 
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depended upon the form factor and number of integrated circuits per function, 

and varies from computer to computer. 

Table C-7. Module Sizes 

Height (in.) Width (in.) Length (in.) Volume (cu-in.) 

T-1 (flat pac) 2 .4  0 .50 2.4 2.88 

T-2 (flat pac) 2.4 0.50 2 .4  2.88 

F-1 (flat pac) 2.50 0.55 3 .OO 4 125 

F-2  (TO-5 style) 3.75 0.40 3.35 5.025 

The integrated circuits within the modules will, in all four computers, be 

interconnected using a similar welded matrix to that used for the intramodular 

connections. 

A matrix is constructed by laying wires in orthogonal directions on either 

Connections are made between the orthogonal wires by side of a mylar film. 

welding in specific locations through holes previously punched in the film. Un- 

desired conductors are then clipped out in accordance with the pattern printed 

upon the film. T eat advantage of the matrix is that it can be tested out 

as an interconnection pattern prior to assembly to tested integrated circuits 

(integreds) . 
This particular method of packaging integrated circuits was selected since 

- 

it provides a high density of integreds per cubic inch, reduces the number of 

connectors and connections required, and provides a suitable structure for re- 

moving heat. At present, this module represents a high dollar cost as a throw- 

away item, but when considered in terms of the reliability, more repairable 

assemblies appear to be unrealistic in terms of size and weight - especially if 

the predicted cost reductions of the integreds occur. 

It is proposed, however, that the basic module will be repairable to a certain 

level without impairing reliability. The mechanism of this repair is based upon 

a technique named "sacrificial welding, " and can only be carried out under con- 

trolled welding conditions such as  are available in-house. The module is so  
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designed that, although cast as a single unit, the integreds will be located such 

that the module can be cut in two without damaging the integreds . The matrix 

within the module will also be in two sections, which will be separately encapsulated 

and bonded together, then welded and the slot filled with silicon rubber for pro- 

tection. To replace a defective fugction in a module, the silicon rubber will be 

removed, the welds cut and the module sawn in two, A new section will be bonded 

to the functioning half and re-welded. 

sacrificial welding which permits more than one repair .  

Figure C .16 illustrates the process and 

C .6.4 Power Supply 

Packaging of the power supply - especially the two computers using the 

Fairchild units - creates problems because of the physical size of components 

used and dissipation within the supply. To maintain effective thermal control, 

and thus reliability, weight and volume must be sacrificed. In each case, those 

components of high dissipation will be connected thermally to the cold plate. 

C .6.5 Thermal Control 

Thermal control of the system is based only upon conduction. Thermal paths 

will be reduced to a minimum. The cooling fins are aluminum because of its ex- 

cellent ratio of thermal conductivity to density, and the cold plate constitutes the 

major portion of the path. The conductance of the joint between the module and 

fin requires high contact pressure which is supplied by the thru-bolt (an element 

of the system which serves more than one purpose). The joint conductance can 

be further improved with a silica-filled silicon grease, or ,  i f  a weight penalty 

can be accepted, indium foil can be placed in the interface. 

Conduction with the module will be through the encapsulating resin.  Typically, 

resins have poor thermal conductivities, Mt can be improved by more than an order 

by use of a mineral filler. The filler also improves the radiation resistance of 

the resin,  lowers its shrinkage, reduces internal stresses, and lowers its co- 

efficient of expansion. The resin used €or the intramodular connection matrix, 

c - 2 1  



INITIAL WELD 1 

THIRD REPAIR 

FIRST REPAIR 
) 

SECONO REPAIR 

FOURTH REPAIR 

SACRIFICIAL WELD TECHNIQUE 

2 SLOT FILLED WITH SILICON RUB6ER 

S A W  CUT AREAS // 

WIRE- / WRAP 
TERMINALS 

Figure C .16 Microelectronic Subassembly Repair 
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however, will use a glass micro-balloon filler. The resin in this case has only 

one function - that of support - and, thus, minimum weight can be achieved. 

C .6.6 Reliability and Maintainability 

By means of short thermal paths and low temperature rises, the junction 

temperature of the integreds can be kept to a minimum, which improves the 

overall reliability of the system. With systems using integrated circuits, the 

failure rate of the interconnections contribute a significant portion of the overall 

prediction. As can be seen, this system has utilized both welded joints and high 

reliability wire-wrap joints. 

Overall maintainability of the system has been considered during this study, 

but it is difficult to compromise with respect to reliability. The termination 

of each module is available for fault finding as it protrudes above the matrix. 

A specific module can be removed by extracting the thru-bolts and removing 

the cold plate structure, unwrapping the wire-wrap joints, re-wraping and re- 

placing the cold-plate structure. 
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